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Fig. 1: We leveraged highlighting techniques previously studied to perform brushing and linking tasks in VR and AR. In our user study,
users manipulated a virtual tablet to search for products of interest in a synthetic supermarket environment. Center: Visual links are
displayed from the data points previously brushed by the user, connecting to the products on the shelves. Top left and right: The outline
technique highlights the product silhouette. Bottom left and right: The animated outline technique shows a gradient hue variation
(green to orange) over time. AR snapshots are shown in the left two columns, while VR snapshots are in the right two columns.

Abstract—In traditional visual analysis, brushing and linking is commonly used to visually connect multiple views using highlighting
techniques. However, brushing and linking has rarely been used in situated analytics, which uses visualizations to analyze data in the
context of physical referents. In situated analytics, data representations must be visually linked to real-world objects. Previous work has
assessed situated brushing and linking in a virtual reality simulation of a supermarket scenario. Here, we replicate and extend the
previous approach by studying brushing and linking in an actual physical space with augmented reality, while further improving the
highlighting techniques. Using a video see-through display, we compare augmented reality with virtual reality. Results suggest that AR
performs better in time and accuracy, but the effectiveness of the techniques varies by condition. These results provide a new framing
of how the real-world stimuli matter in situated analytics.

Index Terms—Brushing and linking, situated visualization, visual highlighting.

1 INTRODUCTION

Traditional brushing and linking techniques are used in visual data anal-
ysis to connect elements across data views using visual highlighting [4].
Such visual highlighting techniques rely on visual attributes such as
color, outline, or labels. For a more precise linking between elements,
there are other approaches using visual links or motion cues.

Physical environments are naturally cluttered, and humans strug-
gle to find and identify relevant objects. Thus, such environments
are likely to benefit from brushing and linking. In particular, situated
analytics [49] helps in decision-making by presenting information vi-
sualizations about the physical environment in AR. These applications
need effective brushing and linking techniques that link digital informa-
tion to physical referents while preserving the perceptual characteristics
of the real world [14].
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While previous work focuses on brushing and linking for 2D inter-
faces, there is only limited work on the integration of 3D environments
using virtual reality (VR) or augmented reality (AR) [13]. Recently,
Doerr et al. [8] evaluated situated visual highlighting techniques in a
simulated brushing and linking context using VR. The use of VR to
simulate AR simplifies the experiment and ensures consistent image
quality [18, 29, 32].

However, a synthetic world might not match the richness and dy-
namics of the real world, and there may be perceptual or behavioral
differences in VR compared to AR [55]. Therefore, the extent to which
the findings can be transferred from VR to AR remains an open ques-
tion. Moreover, Doerr et al. investigated fundamental highlighting
techniques, from which they extracted design guidelines. However,
their paper does not cover a refinement of the highlighting based on
these guidelines.

In this paper, we partially replicate, refine, and extend the study of
Doerr et al. [8]. While the tasks of the original study were largely kept,
we refined the highlighting techniques based on the existing design
guidelines. Most importantly, we introduce an additional AR condition
to supplement the VR condition of the original study (see Figure 1).

In doing so, we take advantage of the fact that consumer head-
mounted display (HMD) technology now offers video see-through
(VST) functionality in addition to an opaque VR mode. Hence, we are
able to compare the highlighting techniques of the original study using
a fully synthetic model under both VR and AR conditions while using
the same HMD.

With our study, we expect to obtain more robust insights into the
visual perception of situated analytics problems, which brushing and
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linking techniques work best for a typical situated analytics use case, as
well as the fundamental feasibility of simulating AR with a VR display.

In summary, this paper makes the following contributions:
• A user study (N=40) to assess brushing and linking in VR and

AR using a synthetic situated analytics environment through a
VST device

• Implications of AR simulation in VR on visual guidance research,
particularly for situated brushing and linking

• A replication-and-extension study that reveals interesting findings
on the validity of AR simulation in VR

2 BACKGROUND AND RELATED WORK

We provide some background in situated analytics (Section 2.1) and
brushing and linking (Section 2.1), the two areas that we intend to
combine in our work. We also discuss the relation of our work to visual
guidance research with an HMD (Section 2.3).

2.1 Situated Analytics
Situated analytics was defined by ElSayed et al. [12] as a combination
of visual analysis with the surrounding world using AR technology [49].
Shin et al. [44] structure the field based on data, visualization, platform,
physical location, and analytics processes. These situated visualizations
allow interactions within real-world contexts since they connect the
referent with the users [60].

However, enabling seamless integration of several referents and
interaction modalities is a challenge for AR technologies [6]. While
the benefits of immersive virtual environments for visualizing complex
spatial data can be striking, the advantages of AR can be more difficult
to manifest [29]. One of the main reasons is that situated analytics
is context-dependent. Several situated visualization researchers have
investigated sense-making on human trajectories [37], biomechanical
simulations [59], sports training [35], smart objects [57] and smart
objects [15].

Even when applications rely on established design patterns for situ-
ated visualizations [31], humans do not necessarily focus on the regions
of interest intended by researchers [50]. As a consequence, some work
proposed region selection [43] and effective guidance [8] for situated
analytics contexts.

2.2 Brushing and linking
Brushing and linking is a standard technique in visual analysis and is
related to multiple coordinated views [54], i.e., patterns that connect
data in two or more views. While brushing means selecting the data of
interest, linking refers to highlighting related data in complementary
views. In conventional desktop visualizations, highlighting is usually
applied by altering the appearance of data points with visual encoding
such as colors, glyphs, animations, or lines [19, 27].

Although brushing and linking is widely used on conventional 2D
interfaces, its use in AR/VR is still an open research question [26].
A situated analytics survey by Shin et al. [44] shows that brushing
and linking techniques have rarely been evaluated in the context of a
physical environment. Previous studies on brushing focused on special
aspects of real-world interaction, such as the selection of occluded ob-
jects [45, 56] or the clutter resulting from linking of dense entities [39].
Doerr et al. [8] compared four highlighting techniques (color, outline,
links, and arrows) in a VR supermarket shopping context.

Efficient highlighting needs to minimize visual clutter while keep-
ing a high contrast [33]. However, visuals are traditionally geometric
shapes that can induce side effects such as attention tunneling [48].
Likewise, the use of temporal cues such as motion and flickering [46]
offers an effective visual search in real-world contexts. Visual high-
lighting also has to be able to guide users to targets outside the field of
view [1].

Mahmood et al. [38] explored the coordination of multiple visual-
izations embedded in surfaces. Various studies applied brushing and
linking to hybrid user interfaces [17, 24, 30, 40] or to physical proxies
that represent virtual content [42]. However, the limited field of view

of optical see-through devices makes it difficult to use these designs in
AR. Video see-through displays can potentially mitigate this problem
with a larger field of view. Borowski et al. [2] followed this approach
and proposed a toolkit to design visual analysis on demand in AR.
Similarly, our prototype uses an HMD with video see-through features
to enable exploration either in AR or in simulated AR (using VR).

2.3 Visual guidance
Visual guidance is used to direct users to areas of interest in the en-
vironment. The effectiveness of guidance is often demonstrated in
360◦ videos [20, 50, 53]. Here, information can be lost due to the lack
of free navigation in videos [22]. Therefore, different strategies have
been proposed to drive the user’s attention, like displaying geometric
cues and modifying the visual content. For example, Lin et al. [36]
used arrows as a hint to support immersive video navigation. Similarly,
rectangles and circles have been used to locate out-of-view objects in
immersive environments [21].

Mixing multiple visual cues can be beneficial as well. Fox et al. [16]
used pointers and outlines to alert people with visual impairments.
Some methods modify the real content of the AR displays with respect
to saturation, contrast, blurriness [47] or brightness [58], but these
approaches can potentially compromise the context. We only use
overlaid virtual elements for visual guidance.

3 STUDY DESIGN

The main objective of this work is to discover how accurately people
perform situated brushing and linking in a real environment compared
to a simulated one. To answer this question, we extend the work of
Doerr et al. [8], which investigates the visual highlighting of products
on shelves in a supermarket. For best comparability, we kept the
original tasks of their study, but refined the highlighting techniques
based on their results and recommendations. In order to compare AR
and VR, we performed the study in VST-AR and VR, using an HMD
that is able to support both modes. In contrast to the original, we were
interested not only in the performance of the highlighting techniques
but also in the differences between AR and VR of a visually identical
supermarket environment.

3.1 Scenario and dataset
A supermarket is an information-rich environment [3] that is highly
familiar to wide audiences. This property makes it a popular use case
for situated analytics studies [5, 8, 11, 60]. Since user studies are dif-
ficult to perform in the public setting of a real supermarket, previous
research relied on small-scale mock-ups of individual shelves [6, 12]
or performed the experiment entirely in VR. We target a supermarket
model that has as few visual differences as possible between VR and
AR. Therefore, we adopted the approach of building the supermarket
environment from scratch, using a digital-first strategy: The supermar-
ket model was first modeled digitally and then physically built in the
image of the model.

To do so, we first scraped metadata of more than 500 products
from a regional supermarket website, including product name, price,
description, and high-resolution images. Second, we selected 263
products sold in box-shaped containers, which fit our process of shelf
placement. In comparison, Doerr et al. [8] used 98 products. Third,
we obtained nutritional information matching the product from online
databases, resulting in 10 attributes per product (Figure 1). Finally, we
sorted the products into 11 categories to inform the shelf layout.

Each product was modeled as a box in Blender, and the product
image was applied as a texture. The dimensions of the boxes were
manually adjusted to match the physical products. We organized the
products into shelves using the rule that no more than three categories
are allowed per shelf. The shelves are 100 cm wide and 200 cm high,
with five boards each. We mimicked a typical product arrangement in a
supermarket by repeating identical products side by side so that each
board is filled with a maximum of five distinct products. We created 15
shelves, which were arranged in five groups consisting of three shelves
next to each other, leading to a final layout consisting of three aisles
(Figure 2).



Fig. 2: We built a small supermarket with three aisles, occupying approx-
imately 25 m². Left: Structure of the supermarket model. Right: Shelf
model, with the spatial arrangement for spatial judgment tasks.

For the physical model, we acquired 15 steel shelves with dimensions
100×200 cm from a local department store and arranged them in the
chosen layout. The front face of each shelf was covered with a poster of
the products printed in high resolution (20,000×40,000 pixels). Using
actual product boxes on the shelves would have increased the realism,
but we preferred posters for multiple reasons: First, posters made the
appearance of the AR supermarket more similar to the VR supermarket,
because physical packaging materials and local illumination conditions
did not affect the look. Second, users could not move the products,
which would disrupt the registration of the real world with the digital
twin. Third, highlighting techniques could exclusively focus on the
front face of the box. Fourth, the effort of building (and changing)
the supermarket was significantly reduced without compromising the
content: Only the products’ frontal appearance had to be modeled. For
a more detailed discussion of the limitations of this approach, please
refer to subsection 6.3.

3.2 Situated visualization

Similar to the original study by Doerr et al. [8], we used an overview
visualization on a virtual tablet held in the user’s hand. The overview
visualization shows a 2D scatterplot and supports various touch interac-
tions, such as filtering or brushing of the data points (Figure 1, center).
Each data point refers to one product. We let the user map arbitrary data
attributes to the x- and y-axes of the scatterplot. Each axis is decorated
with two sliders at its ends to allow the filtering of data points. Most
importantly, the scatterplot lets the user brush the data points, either by
tapping on individual data points sequentially or by dragging a rubber
band rectangle to select the data points inside (Figure 3).

3.3 Highlighting techniques

Visual highlighting techniques require coherent strategies to combine
visual cues from the virtual and real world, enabling users to perceive
areas of interest correctly. The study by Doerr et al. [8] investigated
four basic highlighting techniques: using color overlays (thin outlines
around the object and full object coloring), arrows, and visual links
(leader lines). They found that the thin outlines were useful but often
too inconspicuous, while the full object coloring occluded the object
details. The arrows were animated, which was rated as too busy by test
subjects. The visual links were found to be useful for guiding toward
out-of-view objects, but otherwise were too easily overlooked. The
paper concludes that outlines combined with visual links may be a
potent highlighting technique.

Consequently, we designed three advanced highlighting techniques
(Figure 1) that pick up the lessons learned. We choose a fat outline
for increased visibility, with or without additional visual links. We
excluded the arrows and the full color overlay to avoid the disadvantages
mentioned above.

Outline (O) This technique emphasizes only the silhouette of an
object, while allowing the interior surface to remain visible [45]. Fol-
lowing the design recommendation of Doerr et al. and the desire for a
more suitable high contrast, we implemented the outline as a fat green

line. However, including a fat contour could occlude the next objects,
even more so when the object arrangements are tied to each other.

Animated outline (A) Using a single, static color might interfere
with the colors of the background, like a green outline on a green
product box. Motivated by the feasibility of temporal visual cues
for visual guidance [46], we therefore opted for an animated outline
that avoids this problem by smoothly changing the highlighting color
between green and orange over time. The animation runs continuously
and is synchronized for all highlighted products to minimize temporal
clutter.

Animated outline + linking (L) While an animated outline en-
sures high contrast with the background, it does not guide to off-view
referents. Hence, we added visual links from the data points in the
scatterplot to the corresponding referents [39]. The links are drawn
with a curved line and smoothly update for tablet motions (and, with
it, the data points). For out-of-view products, the line has a visible
display portion on the sides to indicate the connection to these referents.
Compared to Doerr et al. [8], we increased the curvature of the links
and smoothed the transitions caused by the movement of the scatterplot
from the activity of natural users (Figure 1).

3.4 Tasks
To ensure comparability, we adapted the tasks of Doerr et al. [8], which
involve appropriate interactions for situated analytics [60].

Single Selection: This task requires locating one single referent,
e.g., “Select the product that has the highest fat and has gluten.”

Multiple Selections: This task requires locating multiple referents,
e.g., “Select all the products that have more than 36 g fat and have less
than 50 g sugar.”

Spatial Judgment: This task requires the user to judge the spatial
arrangement of groups of referents. The user must indicate whether
the highlighted referents are located on the left, center, right, and the
top, middle, or bottom of the shelves (e.g., “Products that have less
than 3.3 g fat and free lactose are distributed on the top side of the
left shelves.”) The spatial arrangement is taken from the perspective of
the participant (Figure 2, right); no mental rotation is required. This
type of task was chosen to explore whether participants could handle
challenging real-world situations.

Each multi-selection task requires 10 products, and the chosen refer-
ents were distributed uniformly across the shelves.

4 EXPERIMENT

We conducted a within-subjects study with display context (VR or
AR) and highlighting technique (O, A, or L) as independent variables,
resulting in 2×3 = 6 conditions. The experiment was carried out in
a 5×3 m wide area in the middle aisle. The participant was asked to
stand in the center of the aisle. We included referents from the three
shelves to the left and the three shelves to the right. These six shelves
contained 101 referents. The remaining seven shelves were used only
as decoration and were not included in our study.

From the user’s position, only one of the opposing sides of the aisle
was visible at any time. The user had to turn the head or body to face
the other side. Walking was not necessary to solve the tasks.

The VR and AR conditions were performed at the same location,
and the supermarket was shown on the same scale. However, in the VR
condition, the user’s entire field of view of was filled with the virtual
supermarket, while the video see-through was turned off. Thus, the VR
and AR conditions only differed in the presentation of the supermarket
model.

4.1 Hypotheses
We had the following three main hypotheses for our experiment.
H1: Similar results will be found under VR and AR conditions. Pre-
vious studies argue that VR experiments can be representative of AR
experiments. However, there is no systematic evidence on how far this
transfer of findings from VR to AR goes. We purposely made the VR
and AR conditions as similar as possible to uncover any remaining
differences.



Fig. 3: Brushing on a situated scatterplot in our user study. The top row shows the steps to solving a single selection task using O in AR, and
the bottom row, a multi-selection task using L in VR. From left to right: First, the user adjusts the data dimensions and filters to meet the task
requirements. Second, they brush the data points by selecting one-to-one or delimiting regions. Third, once the data points are selected, linked
referents are highlighted. Fourth, the user examines the environment to find the highlighted products, confirming by pointing a ray and pressing the
trigger on the controller. Link colors are animated by transitioning from green to orange and back.

H2: A will perform better than O. Several works benefit from the use of
animation to compare trends, provide visual guidance [51], and direct
attention in virtual environments. We expected that completion times
and error rates would benefit from animated colors.
H3: L will give the best results overall. We expected that the additional
guidance provided by the visual links would facilitate brushing and
linking when out-of-view referents are involved.

4.2 Participants

We recruited 42 graduate students from our university campus, but
after observing the recording data, two participants were removed from
our analysis due to inattention caused by excessive delay between trial
initiation and task execution and a technical problem. The final set of
40 participants (17 female and 23 male) ranged in age from 18 to 44
(eight participants from 18 to 24, 30 participants from 25 to 34, and
two participants from 35 to 44). All had normal or corrected-to-normal
vision and, if necessary, wore glasses in combination with the HMD.
Their reported previous experience with an HMD was no/low for 15
participants and high for ten participants. Of the 40 participants, five
reported having no experience with 3D computer games, and three
were left-handed.

4.3 Apparatus and implementation

We used a Meta Quest 3 (running Horizon OS 72.0) with touch con-
trollers and Unity 3D (version 2022.3.34f1) with the Meta XR Inter-
action SDK (68.0.1) to implement the application. The device has a
horizontal field of view of approximately 110 degrees. For the study,
we ran the application standalone and set the display to have at least
72 fps. In addition, the environment calibration is performed using
fixed virtual anchors on the floor squares. For the AR condition, we
used the pass-through capability of the device. In addition, a virtual
tablet of 40 cm by 31 cm was presented, attached to the controller held
in the non-dominant hand. The tablet showed instructions, tasks, and
a scatterplot visualization. Brushing on the tablet was implemented
by ray-casting from the controller held in the dominant hand. We as-
signed the trigger and grip buttons on the controller to highlight and
de-highlight, respectively.

4.4 Measures
We defined the following primary measures that apply to all 18 tasks
featured in our experiment:

(1) Completion time. We measured the time interval from task start
to the selection of an answer.

(2) Linking time. We measured the time that the participant’s gaze
was fixed on the environment, instead of the scatterplot.

(3) Error rate. We determined binary accuracy: In the selection tasks,
we determined whether or not the participant was entirely correct in
finding the referents on the first attempts. In spatial judgment tasks, the
answer is binary. The error rate was directly computed as the fraction
of correct answers.

Additionally, we measured workload, using NASA-TLX [23], usabil-
ity, measured using Umux-lite [34], and presence, measured using the
Igroup Presence Questionnaire (IPQ) [52]. All measures are averaged
over the number of repetitions.

4.5 Procedure
Our user study protocol was approved by the Committee for Responsi-
bility in Research (Ethics Committee) at the University of Stuttgart. A
Latin square design counterbalanced the order of the conditions. Each
participant performed six sessions, where they started using one of the
three highlighted techniques in the VR condition and later continued in
a similar order in the AR condition (or vice versa). Within a condition,
the task order was fixed, consisting of one single, multi-, and spatial
judgment task per technique. We created six tasks per task type (18
in total) to prevent learning effects. Before the actual experiment, we
performed a pilot study (N=5). The results allowed us to improve the
clarity of the instructions given to the participants and to accelerate the
animation sequences.

The experiment lasted approximately one hour. In total, the exper-
iment collected data from 40 participants × 2 viewing contexts × 3
techniques × 3 task types = 720 trials. After an introduction and signing
of the consent form, participants were introduced to the virtual tablet
and interaction options. In addition, we showed the supermarket and
explained the spatial arrangement inside a shelf (top, center, bottom)
and in a group of three shelves (left, middle, and right), used in the spa-
tial judgment tasks. Next, the experimenter calibrated the environment
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and adjusted the controller interface to match the handiness of the par-
ticipant so that they could hold the virtual tablet with the non-dominant
hand and interact with the dominant hand. The participants then put on
the headset and grabbed both controllers. For each condition, the envi-
ronment was recalibrated, and the participants went through a training
phase, followed by the main trials, including questionnaires and a short
semi-structured interview. Finally, participants were compensated with
14 EUR.

During training (5-10 minutes), the experimenter explained the
tablet interface without active tasks. The participants could familiarize
themselves with the features, try the selection of data points using both
brushing and filters, and observe the highlighting technique applied to
the chosen referents. This training phase used a modified dataset.

In the main trials (30-40 minutes), the order of conditions was
counterbalanced, but the order of tasks in one condition was fixed:
single, multi-selection, and spatial judgment tasks. Before each trial,
a text informing about the task was shown on the tablet. Once the
participants pressed the start button, the scatterplot was displayed. For
the selection tasks, the participants had to select all the highlighted
referents by pointing a ray towards the referent and confirming with a
trigger button. In the case of the spatial judgment task, the tablet showed
three options, “yes”, “no” and “maybe”. We intentionally included
the option “maybe” to reduce guessing, in accordance with Doerr et
al. [8]. Once a task was completed, all highlighting was reset, and the
participants were required to return to the center of the aisle. After the
three highlighting tasks (subsection 3.4), the participants were invited
to complete the workload questionnaire. At the end of the condition,
they completed the usability and presence questionnaires. After the
VR or AR parts of the experiment, they rated the three highlighting
techniques.

Finally, participants filled out a demographic questionnaire, and we
conducted short semi-structured interviews (<5 minutes). Here, we
asked some questions about the overall experiment, including preferred
techniques and subjective task performance.
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CI, the stronger the evidence is.

5 RESULTS

Following recommendations for establishing a modern evaluation
methodology [7, 9], we report our inferential statistics using inter-
val estimation instead of p-values. Confidence intervals (CI) were
calculated using bias-corrected and accelerated bootstrapping [10]. CI
allow for more meaningful interpretations. Pairwise CI that do not
overlap with zero correspond to p-values smaller than the significance
level, providing the same evidence of differences as in traditional null-
hypothesis significance testing. On the other hand, crossing with zero
indicates no statistically significant difference. Hence, no p-values are
reported, but they can be obtained from CI results [28]. Source code,
data collected, and analysis scripts are available as supplementary

material1.

5.1 Overall results across conditions

Figure 4 (top) shows completion time for all tasks. Participants took
less than one minute to complete each task, being faster in AR (40.79
s) than in VR (43.78 s). No evidence was found that completion times
differ significantly between display conditions.

Figure 4 (bottom) shows mean linking time for all tasks. Participants
spent less than 15 seconds observing outside the tablet for each task.
Mean times are shorter for AR (8.73 s) than for VR (10.89 s), indicating
that AR is 2.16 s faster than VR.

Figure 5 (top) shows the mean error rate for selection tasks. There is
clear evidence that AR is less error-prone (10.42%) than VR (21.25%),
with an estimated difference of 10.83%.

Figure 5 (bottom) shows the mean error rate for spatial judgement
tasks. While AR is more error-prone (23.33%) than VR (17.5%) on
average, there is no evidence that mean error rates differ between
conditions for spatial judgment tasks.

Overall, the findings do not align with H1: While completion time
and spatial judgment error rate do not show meaningful differences
between conditions, AR reduces linking time and is less error-prone
than VR for selection tasks.

5.2 Results per technique

Figure 6 (top) suggests that the mean completion time in AR is shorter
for O (40.29 s), followed by L (40.55 s) and A (41.53 s). However,
there is no strong evidence of differences between the three techniques.
For VR, L performed the fastest (40.61 s), followed by O (45.29 s) and
A (45.44 s). We found evidence of a meaningful difference between L

1https://github.com/cquijanoch/SituatedBrushingAndLinking

https://github.com/cquijanoch/SituatedBrushingAndLinking
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and A, with L being faster than A by 4.83 s. While L is the fastest in
VR, there are no remarkable differences in AR, on average.

Figure 6 (bottom) shows that mean linking time in AR is shortest for
O (8.63 s), followed by L (8.68 s) and A (8.88 s). However, there is no
strong evidence of meaningful differences between the three techniques.
For VR, L has the fastest linking time (8.58 s), followed by O (11.21 s)
and A (12.87 s). Evidence shows that L is faster than O by 2.63 s and
A by 4.29 s. In addition, differences suggest that O is faster than A in
VR. There are no considerable differences among techniques in AR.

Figure 7 (top) shows that mean error rates in AR are lowest for A
(10%), followed by L (15%) and O (15%). There is no strong evidence
of meaningful differences among the three techniques. For VR, A
is also less error-prone (12.5%), followed by O (25%) and L (60%).
There is strong evidence that L is less accurate than O by 35 percent
points and A by 47.5 percent points. Besides, pairwise differences show
that A is more accurate than O. Regarding spatial judgment accuracy
(Figure 7, bottom), while there are no large differences between the
techniques, on average, O performs better in VR.

Thus, the results align only partially with our hypothesis H2. A is
less prone to error than O. However, the participants spent slightly more
time with A. For H3, we found that the completion time and linking
time of L are the fastest only for VR. However, L is more error-prone
for VR. Hence, H3 is partially supported for VR.

5.3 Workload
In addition to time and accuracy, we were interested in investigating
possible differences in perceived workload between highlighting tech-
niques using NASA-TLX. Figure 8 suggests evidence of differences
in VR only. For mental demand, physical demand, and effort, results
indicate that L performs better than A. The results in Figure 8 also
suggest that L reduces the physical demand, effort, and frustration
compared to O.

5.4 Usability and presence
We calculated the System Usability Scale (SUS) from the Umux-
Lite [34] filled out after the condition trials. However, as shown in
Figure 9, the score for AR (75.31) is only slightly higher compared to
VR (75.17), with no evidence of a meaningful difference.

In addition, we explored the presence factors of both conditions and
found a similar “sense of being there” mean score of 4.05 for AR and 4.6
for VR. Exploring the presence factors, Figure 10 (left) shows that the
sense of being physically present (SP) for VR is higher (4.26) than AR
(3.92). For the subjective experience of realism (REAL), results suggest
that AR is slightly higher (3.48) than VR (3.24). The involvement (INV)

for VR is higher (3.81) than AR (2.11). Figure 10 (center) shows that
there is evidence that involvement for VR is greater than AR by 1.7.

5.5 User preferences
Based on our results, all participants quickly learned how to interact
with the application to solve the tasks under both conditions. Fig-
ure 10 (right) shows participants’ responses for their preferred high-
lighting technique by condition. Most of the participants rated L as
their first choice in AR (87.50%) and VR (80%). The second choice
rating shows that for AR, A is the most rated (62.50%), followed by O
(32.5%), while for VR, A and O were rated similarly by the participants
(45% and 42.5%, respectively).

The responses in the interview section confirmed the previous anal-
ysis: Most participants agreed that visual links (L) helped track the
referent’s location, avoiding searching in other places. However, we
found that L appears obtrusive. P9 commented that “the links appear
extremely fast and may cause sickness”; P12 made a similar comment.
In addition, P24 added that “the popup of the links is worse in AR
than in VR, in VR it is more smoothly”. Moreover, P18 commented
that “Link works good when you are selecting few data points”. P13
emphasized that “the links distract from checking the surroundings to
find the products”. We also observed that the users looked back once
the data points were highlighted and the links were displayed. This
behavior happened when the participants applied the rectangle brushing
mode.

Regarding the effectiveness of color animation (A), we found that
the majority of the participants did not realize the color was animated.
However, there is no simple solution. Using a faster animation was
suggested by three participants. For example, P17 commented that “the
animation was at first not perceptible”, and P20 that “I need to wait for
the change of color”. However, P1 mentioned that “Animation is too
fast. Blinking could cause illness”. Eight participants suggested differ-
ent colors: P2, P4, P31, and P37 proposed that the animation should
consider the current product and shelf colors. P27 and P33 suggested
using colors such as red, blue, pink, and purple, while P11 suggested
using colors by product category. In addition, we detected that the par-
ticipants had difficulty finding green and orange box products, mainly
in VR. P3 pointed out that “it was harder to recognize the green box
because the green highlighting color in VR, maybe for this case it
makes more sense the AR”. P20 commented to like “outline better than
the animated one because the color [green] contrasts with crackers
[orange] and other products”. Some participants interpreted the orange
color as response feedback. P19 remarked that “after some seconds,
I felt the animated colors looked like a false response”. P34 pointed
out that “color could change with the gaze, by product independently,
instead of as a whole.”.

Participants enjoyed the VR condition due to its high immersion, but
also remarked that AR is very promising. P2 pointed out that “there
are benefits of highlighting techniques in AR due to the display of the
device”. P15 also added that “in AR it is easier to perform the tasks,
but VR looks like more fun”. Furthermore, P7, P17, P18, and P34
complained about the HMD resolution.

6 DISCUSSION

This study compared three highlighting techniques—O, A, L—to per-
form situated brushing and linking tasks in VR and AR. Since we
replicated the work of Doerr et al. [8] only on the conceptual level of
feature and design choices, the results cannot be directly compared.
Therefore, we discuss our main findings (in the light of theirs, when
possible), implications, and limitations of our study.

6.1 Main Findings
Visual highlighting for situated brushing and linking differs

between AR and VR. It seems that the visual recognition of the
highlighting differed between AR and VR (subsection 5.1). It was more
clearly perceived in AR because of the noticeable visual differences be-
tween the video-see-through content and the overlays. This advantage
resulted in faster and more accurate performance in AR. As long as VR
cannot deliver a visual scene representation that is indistinguishable
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from AR, we must expect performance differences between VR and
AR.

L performs faster overall but is less accurate in VR. We assume
the visual links assist in achieving the target faster in both conditions;
however, the silhouette is difficult to perceive in VR. Hence, the end
routing of the link mainly influences accuracy in VR compared to AR.
The 3D rendering makes the user perceive one congruent scene in
which visual cues affect all content uniformly. The silhouette of the
objects was confused with the body of the objects and affected target
recognition. This fact is also reflected in the workload results.

A is more accurate but slower than unique color. Although
the results do not show strong evidence, the completion time of O is
lower than that of A in both conditions (Figure 6). However, the error
rate of A is lower than that of O for finding referents (Figure 7 top).
We assume that this might be due to the chosen color sequence and
animation speed. We deduce that, among the outline techniques, A is
unobtrusive for visual guidance, but time-consuming.

L is most preferred by the participants. Similarly to Doerr et
al. [8], visual links are subjectively preferred. However, this technique
copies the visual properties of A and extends it by a visual line to guide
to targets, which limits its comparability. Visual link design should be
investigated in more detail to make it more effective.

Highlighting techniques lead to the same spatial judgment.
The spatial abilities (not discussed in detail by Doerr et al. [8]) that
users exhibited in our experiment did not differ between AR and VR.
The results suggest that there are no differences with respect to spatial
judgment by display or technique condition yet. The reason could
be that all techniques offer a similar level of spatial awareness. In
that sense, the AR environment can be replaced by a simulated VR
environment without disadvantages in the spatial abilities, as expected
from the results obtained in spatial presence research.

6.2 Implications and future work

Visual links cause discomfort and occlusion. As reported
in subsection 5.5, multiple artificial marks displayed in a frame cause
occlusion and visual discomfort. For example, when brushing multiple
data points at once, links add clutter to the tablet interface. Some vi-
sual links can be occluded if targets are behind the tablet or the links
penetrate the image plane. We propose that visual links should be
displayed with a faded-out appearance near their origin to minimize the
clutter. In addition, the links could be routed away from the user’s gaze
direction. Another strategy is to change the origin of the visual links.
We always start the visual line from the data points. Other layouts are
conceivable, such as starting visual links from the closest edge of the
tablet. We also speculate that visual links floating in physical space
could be distracting. Especially if L connects to an item in a different
aisle, it may be better to route visual links on the floor and ceiling.
Such a use of ‘above’ and ‘below’ has been previously suggested by
Satkowski et al. [41]. Besides, the end routing of the link matters for
cluttered targets. Adjusting the ending line, which reaches the referents,
to be perpendicular and thicker could ensure greater accuracy.

Animated color is unobtrusive but time-consuming. We ob-
served that the animated highlighting color (green to orange) did not
optimally consider colorimetry factors. Future studies could evaluate
the effectiveness of A in situated brushing and linking. For example,
a recent study [51] assessed non-obtrusive animation colors for visual
guidance on standard displays. However, they did not explore their
performance using current VR or AR displays. In addition, following
the suggestion of the participants (subsection 5.5), the effectiveness of



dynamically changing the color considering the object’s own color is
an opportunity for future implementations.

Outline techniques require guidance strategies. Both outline
techniques cannot highlight out-of-view targets, which limits their
application in complex layouts, where targets located in other aisles
are occluded (Figure 2). Our experiment only considered a single aisle.
In the future, a multi-aisle visualization could use a “magic lens” to
reveal referents behind the occluders. This pattern is commonly used
in situated analytics [31], but its effectiveness for brushing and linking
is currently unexplored.

Brushing and linking physical objects of interest. The current
brushing interactions focused on one direction, from the data points to
the physical referents. However, in real scenarios, users can interact
with the physical environment. As AR leverages the physical envi-
ronment, users can acquire information about the physical objects on
demand. Querying information based on visible objects in unexpected
scenarios is challenging to simulate in VR, due to the isolation from the
real world, e.g., retrieving information from picking objects. Further
work could assess object selection of physical referents in AR [40, 43]
to evaluate all directions of situated brushing and linking at once.

Situated brushing and linking in VR We noticed that subtle dif-
ferences in visual realism between VR and AR can lead to performance
differences in an otherwise identical task. In our experiment, AR had
the advantage that highlights were more easily identified in comparison
to the video background, compared to the synthetic background in VR.
This observation suggests that VR simulation has its limits. Users in
VR could be influenced by illusion rather than realism [25].

6.3 Limitations
For the AR condition, we built physical shelves but used high-resolution
printed posters for the products. As pointed out in subsection 3.1,
this procedure has several advantages in terms of costs, flexibility,
and reproducibility. However, it also reduces the realism in the 3D
perception of the products, possibly affecting ecological validity. We
tried to limit this effect by basing the highlighting techniques on the
digital 3D models, keeping the spatial arrangement the same in all
conditions, and not involving the need for touching products or walking,
even in the AR condition, ensuring that the techniques worked the same
in VR and AR. However, four of our 40 participants mentioned the use
of posters as a limitation, and we cannot completely rule out a negative
effect on performance in the AR condition.

Another limitation is the use of only one HMD model, the Meta
Quest 3, in our study. Future devices may differ with respect to the
field of view, resolution, or distortions. Therefore, special care must be
taken when generalizing our findings to arbitrary headsets.

Moreover, the performance results on highlighting (linking) reported
in this paper may be affected by errors or misinterpretation in the
brushing phase. To avoid interrupting users after each step required in
a given task, we considered brushing and linking as a single process
judged as a whole. Users who erred during brushing would have likely
performed poorly on the linking part, but our experimental procedure
did not explicitly split these causes. In addition, additional perceptual
and cognitive metrics may be necessary to get a more complete picture
of how humans operate in VR and AR.

7 CONCLUSION

This work evaluates the performance of highlighting techniques for
situated analytics. We revisit insights from a previous study by Doerr
et al. [8] and address the topics left open in that work. Specifically, we
focus on refined highlighting techniques that satisfy the design guide-
lines put forward by Doerr et al., and we investigate how perception of
the brushing and linking changes in a VST-AR setting taking place in
a physical supermarket as opposed to a mere virtual one. Our results
suggest that VST-AR performs better in task performance and accu-
racy overall. Likewise, the animated linking performs faster but less
accurately in VR only, whereas the use of animated colors improves
accuracy compared to static color, albeit at the expense of time.
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