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Fig. 1: HandLight estimates the surrounding illumination from hand appearances during gesture-based interaction. For example,
while exploring furniture options for an office (a). After a furniture piece is selected, (b) its initial shading does not match the
environment (c). As the user interacts with the model to adjust its position and orientation, the system estimates the surrounding
illumination with HandLight, resulting in a coherent appearance (d).

Abstract— Correctly estimating the surrounding illumination is essential for creating visually coherent Mixed Reality (MR) experi-
ences. The most accurate results can be achieved by utilizing a light probe, a dedicated object with known reflectance parameters
that is placed into the scene. However, the need for a dedicated object placed in the area where the illumination is estimated presents
a severe limitation. Building on the increasing popularity of gestural interaction in MR, we present HandLight, an approach to estimat-
ing the illumination from the user’s hands during interaction. Contrary to static light probes, HandLight does not require preparation
of the environment and generates an atlas of light probes while the user moves in the world, thus reflecting variable illumination. Our
system utilizes a neural network that learns the environment lighting from images of the hand. We train the network on a dataset de-
picting three common gestures (pinch, fist, bloom) under varying light conditions. We show that our approach can provide believable
illumination estimations for a variety of illuminations on a dataset of real hand images.

Index Terms—Mixed Reality, Illumination Estimation, Deep Learning, Interaction

1 INTRODUCTION

With the success of consumer-grade head-mounted display (HMD) de-
vices, such as the HoloLens 2, Meta Quest 3, or Apple Vision Pro,
Mixed Reality (MR) has become accessible to end users. While ad-
vances in object and user tracking support geometric registration well,
photometric registration in unprepared environments and at real-time
update rates remains challenging. Existing approaches often require
time-consuming processing [10, 33, 40] or depend on often difficult to
achieve prior knowledge of the user’s environment.

Mimicking the real-world scene illumination requires instantaneous
and accurate estimation of the light parameters for an unknown num-
ber of light sources across the scene, with unknown shapes, colors,
and intensities. While some MR devices have built-in light sensors,
these provide only a rough estimate of the surrounding intensity with
no information about the location or direction of the light sources.

A widely used approach to illumination estimation is placing a light
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probe, traditionally a sphere with known appearance and reflectance
parameters, in the scene and recovering illumination from its appear-
ance [7, 19]. More recent methods replace the reflective sphere with
an arbitrary object. By training a deep learning model with illumi-
nated images of that object, the model becomes able to predict its ap-
pearance changes under different light situations at runtime [23, 43].
However, while such approaches can recover the surrounding illumi-
nation in real-time, they require a known physical object in the scene
with known reflectance parameters. Additionally, these systems can
only estimate the illumination at the position of the object. This lim-
itation makes them less suitable for mid- to large-scale environments,
where multiple such light probes would be required to capture the en-
tire scene illumination.

To address the practical limitations of placing object-based light
probes in a scene, several approaches have been proposed for estimat-
ing the illumination of unprepared and unaltered environments. These
include approaches based on 2D images [17, 30, 36] and approaches
based on 3D reconstructions of the environment [13,34,47]. Although
more versatile, these methods cannot recover local illumination and
fail in scenes with limited detail. In addition, approaches based on
scene reconstruction are resource-intensive and include errors from an
incorrect registration of the reconstruction.

In this paper, we present HandLight, a novel approach to estimat-
ing illumination in mobile MR applications on an HMD. HandLight
builds on the observation that gestural interaction with virtual content
is becoming more common in MR applications. During user interac-
tion with virtual content, the cameras on a recent HMD often observe
the hands of the MR user for gesture detection. We exploit this data



and use the detected hand gestures for a subsequent light estimate.
In particular, we use a neural network that has been trained on vir-
tual renderings of hand gestures under varying illuminations. In our
prototype, we focus on the bloom, pinch, and fist gestures, which are
commonly used in MR interaction. By inferring the illumination con-
ditions from images of the hands, we create localized light probes that
reflect changes in illumination throughout the scene. As hand interac-
tions are not restricted to a certain place, our approach is well-suited
for mobile applications.

Figure 1 shows an example application, in which user hand interac-
tion is monitored to detect environmental lighting. In this application,
the user explores different furniture in an MR environment. After se-
lecting a virtual piece of furniture, the user places the corresponding
3D model within the real environment by performing a certain gesture.
The system detects the placement gestures, which trigger HandLight
to estimate the lighting at the position of the user’s hand. We use the
position of the hand at the time of light estimation to spatially anchor
the light estimation, i.e., we interpret the hand at the time of estimation
as a light probe at the position of the hand. As the user walks around
and places additional pieces in the environment, we further detect the
illumination locally at the position of the user’s hands.

To evaluate our approach, we conducted extensive evaluations on
captures of synthetic and real hands performing the target gestures.
We compare the results obtained with our approach to ground truth
data captured with a camera having a wide field of view. We show
that our method can capture the surrounding illumination, presenting
a practical approach for unconstrained coherent MR experiences.

In addition, we demonstrate the impact of our design choices on the
result in an ablation study. In summary, our work makes the following
contributions:

• We introduce HandLight, the first approach for mobile light estima-
tion based on hand interaction in MR applications. Using Hand-
Light, we create localized, i.e., spatially anchored, light probes dur-
ing interaction with MR content.

• We present a comprehensive evaluation of HandLight on rendered
and real hands.

• We built a prototype implementation of HandLight on two HMD
types (HoloLens 2 and SNAP Spectacles’24) to verify its practica-
bility and to demonstrate possible use cases.

2 RELATED WORK

Scene illumination can be recovered from images, videos, 3D recon-
structions of the environment, or the appearance of a known object.
In the following, we provide an overview of previous work. For more
extensive background information, we refer the interested reader to re-
views of existing illumination estimation methods by Alhakamy and
Tuceryan [1] and Einabadi et al. [8].

2.1 Light estimation from physical objects
Debevec and Malik showed that the incoming illumination can be re-
covered from observations of a mirror ball [7] that can be applied
to illuminating virtual scenes [6]. This approach became widely
adopted [19, 38], as it is both accurate and simple. However, relying
on a mirror ball for light estimation requires inserting it directly into
the scene, which alters the way the environment is perceived. This
intrusion not only affects the integrity of the scene but also becomes
impractical in large-scale environments, where placing multiple mirror
balls would be required.

Jachnik et al. [18] proposed scanning an arbitrary but specular ob-
ject to estimate its reflectance and texture. After the parameters have
been estimated, the object can be used as a light probe that is less in-
trusive. However, since specular objects are not naturally available
in many environments, the light may still be perceived as unnatural.
Mandl et al. [23] overcome this limitation by generating a dataset of
synthetic renderings of a 3D scan of a real object that is not necessar-
ily specular. They represent the illumination by spherical harmonics
(SH) and use a convolutional neural network (CNN) to estimate the

SH coefficients from images of the object. Spherical harmonics pro-
vide a compact and computationally efficient representation of func-
tions over a spherical domain. In an SH representation [31], radiance
can be computed as a weighted sum of the basis functions instead of
solving a complex integral, which is infeasible for real-time rendering.
Directional illumination can be represented by just a few coefficients
that weigh a set of hierarchical basis functions [11].

Similar approaches that allow the use of an arbitrary real object as
a light probe have been explored in recent years [41, 43]. However,
although these approaches do not alter the perception of the scene,
they require preparing the scene, which is often impractical for mobile
applications.

2.2 Light estimation from 3D reconstructions
Approaches that avoid introducing additional objects for illumination
detection often rely on a 3D reconstruction of the environment. For
example, Gruber et al. [13] compute the SH coefficients for each ver-
tex of a reconstructed scene mesh and recover illumination at run-time
by solving an equation system that describes the diffuse illumination
observed at the vertices. While this approach produces good results,
generating the 3D reconstruction can be time-consuming, whereas the
reconstruction and its real-world registration may be prone to errors.
Gruber et al. [12] presented an extension for dynamic scenes that in-
troduces an improved radiance transfer sampling scheme to achieve
real-time frame rates [14]. However, generating the 3D reconstruction
of the user’s environment remains an obstacle for its practical use.

Rohmer et al. [34] introduced a more lightweight approach that uses
an initial 3D point cloud reconstruction instead. The point cloud is
used in a server-side simulation and streamed to a mobile device to
apply the result at runtime. While offloading computationally inten-
sive tasks is a practical approach, creating the sparse point-cloud re-
construction requires additional time, and the result may be unreliable
in feature-deprived environments.

Zhao et al. [46] propose to recover a sparse point cloud of the en-
vironment and to estimate the illumination from the recovered points
using machine learning. They later extended their work by separat-
ing the reconstruction into near-field and far-field components [47].
By recovering the local model and appearance as a dense mesh, the
system could estimate the near-field lighting and appearance of high
quality. Illumination components and scene appearance farther away
were recovered as a sparse point cloud.

While approaches to light estimation from 3D reconstructions avoid
the need for preparing the environment, obtaining a reconstruction is
typically a computationally expensive task. Using a sparse point cloud
lowers the computational demand, but makes the system less reliable
in unprepared environments.

2.3 Light estimation from images
In scenes where a light probe or 3D reconstruction is not available,
the direction of incoming light can be inferred directly from images.
Traditionally, shadow analysis provided insight into the direction of
dominant light sources. The illumination can be estimated from the
shadows in the scene [29, 35]. This approach is especially effective
in outdoor environments, where a single distant light source (the sun)
is present. In recent years, rather than analyzing specific aspects of
the image, various neural network architectures have been explored to
infer the illumination of the scene. Although some methods parame-
terize illumination [17, 24], a more common approach is to estimate
environment maps without any restrictions [10,37,41]. Somanath and
Kurz [36] utilize a GAN-style framework to train an encoder-decoder
network that generates a panorama from a single image and extracts
the illumination from it. Most recently, stable diffusion models have
been utilized to predict the surrounding panoramas from which HDR
illumination can be extracted [30, 45].

While most of these methods work with images, they heavily de-
pend on the scene showing information to infer lighting from. For
example, a scene with uniform texture or few or subtle shadows will
present a challenge for these approaches. We overcome these prob-
lems by relying on the user’s hand that is always available.



Fig. 2: Overview. HandLight utilizes the device’s tracking capabilities to (a) detect and localize the gesture performed by the user. (b) From
the camera feed of the scene camera on the head-mounted display, we (c) segment the user’s hand and (d) select the network trained to estimate
the illumination for the detected gesture. (e) The selected network estimates the (f) spherical harmonics representation of the environment
illumination. Finally, we combine the estimated gesture position, the device pose, and the estimated spherical harmonics to (g) compute the
scene illumination and apply it to virtual content.

2.4 Light estimation from humans as a light probe
We investigate an approach using images of a known object class, the
user’s hands, that is always available to a mobile system. Approaches
using humans present in a scene for light estimation have been con-
sidered before [39]. Knorr et al. [20] relied on appearance changes
of several points on the user’s face to estimate the surrounding light-
ing. Nishino and Nayar [28] showed that the reflections in the user’s
eyes can be used to determine surrounding lights and apply them to
relight the scene. Recently, neural networks have been used to recover
scene illumination from facial images [3, 22, 42]. Whereas existing
approaches rely on capturing other people in the scene or pointing a
camera at a specific body part, our method uses images of the user’s
hands, which we acquire from observing interactions with MR con-
tent. Therefore, we do not require any changes to an existing MR
system. Marques et al. [24, 25] proposed using the user’s hands for
illumination estimation in virtual reality. Their work is conceptually
closest to ours, but they operate in virtual environments and did not
investigate the suitability of the method for MR applications in the
real world. Furthermore, they did not provide any information on the
size of their dataset, details of the evaluation, and provide few results.
As we show in our evaluation, our approach significantly outperforms
their results.

3 METHOD

HandLight takes advantage of the fact that hands are often visible to
the system during interactions. Therefore, we can use the appearance
of the hand as a reliable and readily available light probe (see Figure 2
for an illustration). Rather than estimating the illumination from arbi-
trary hand poses, we take advantage of common gestures to detect and
segment the user’s hands. Thus, HandLight relies implicitly on user
interaction with MR content. However, the required interactions are
already part of most MR applications.

For each gesture, HandLight utilizes a dedicated CNN to estimate
illumination. Hand tracking simultaneously determines the location of
the hand, indicating where in the MR environment the SH parameters
have been estimated. If multiple closely spaced SH estimations are
available, we use these light probes for outlier detection and removal.
In the following, we provide details of each component of our pipeline.

3.1 Neural illumination estimation
HandLight assumes that the skin on the user’s hand can be approx-
imated as a diffuse surface and that the light is emitted by a distant
source, e.g., ceiling light, windows, etc. We represent the global and
directional illumination aspects through the first three SH bands (a to-
tal of 27 coefficients for nine basis functions in RGB).

We use a CNN to estimate these coefficients from segmented im-
ages of the user’s hand. Our network, shown in Figure 3, consists of

two main building blocks, a ConvBlock and ResNetBlock [16], which
we combine into a ConvRes block (Figure 3(right)). A ConvBlock
consists of a convolutional layer with a 3×3 kernel, followed by a
max-pooling layer with a kernel size and stride of two, and a ReLU
activation function. A ResNetBlock consists of two convolutional lay-
ers, each of which is followed by batch normalization and ReLU.

The overall architecture of HandLight (Figure 3(left)) starts with a
300×400 image of a segmented hand performing one of the gestures.
We chose this resolution to be memory efficient, while keeping train-
ing times short. The image is processed by five ConvResBlocks with
increasing channel size, followed by a single ConvBlock and finally
two fully connected layers with linear output. The output of the last
ConvBlock is flattened to generate the input for the first linear layer.
We use ReLU for all layers as activation functions. Only the final layer
has no activation function and directly outputs the 27 SH coefficients.
Note that we considered smaller alternative architectures, such as the
one proposed in Mandl et al. [23]. However, we noticed that such
small models have insufficient capacity to represent the illuminations
and the required variations in hand poses of the same gesture.

3.2 Training

The error function L consists of two parts, a general loss term that
uses a mean squared error (MSE) on all the resulting coefficients (left
sum in L ), and a weighted MSE that emphasizes errors for some co-
efficients (right sum in L ). The weights are computed on the basis of
an exponential fall-off that penalizes high-frequency coefficients more
than low-frequency coefficients. This formula ensures a balance be-
tween the overall illumination estimate and directional components.
For all images in the dataset, we normalize the intensities. The error
function L is defined as

L =
N

∑
i=1

1
N
(yi − ŷi)

2 +λ

N

∑
i=1

1
N

√
i

N −1
(yi − ŷi)

2,

and yi and ŷi are the ground-truth and predicted SH coefficients, re-
spectively. The term λ (empirically set to 0.1) balances the general
loss and the coefficient-weighted loss.

We divide the training data into a training set of 80% and a valida-
tion set of 20%. We use a standard optimizer, i.e., the Adam optimizer
with a learning rate of 1/1000 and weight decay. The model is trained
for 2000 epochs with early stopping to select the best model. We em-
pirically found that these parameters work best in our experiments.

3.3 Data generation

We use renderings of an illuminated hand model together with ground
truth SH coefficients for training. We chose synthetic data as the basis
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Fig. 3: Network architecture. (left) Our network processes the segmented image of the hand with five ConvRes blocks with an increasing
number of channels, followed by a Convolution with a 3x3 filter, a Max pool, a ReLu layer, and two fully convolutional layers. The outcome
is the first 9 spherical harmonics components for each color channel. Thus, the output is 27 parameters, nine parameters times three color
channels. (right) An illustration of the layout of the building blocks.

Fig. 4: Training data. Sample images from the datasets used for train-
ing light detection. Our prototype used three gestures. Each row is a
different light variations and every two columns are without and with
pose variations.

for our training dataset because it allows us to easily produce images
of hands under controlled lighting conditions.

While there is a large number of hand datasets with variable illumi-
nation [26,27], these do not include egocentric hand captures perform-
ing gestures interacting with virtual content. As capturing a sufficient
number of egocentric hand captures under variable illumination for
machine learning presents a challenge in itself, we generate a custom
synthetic dataset.

The training data is generated in an OpenGL framework that loads
the synthetic hand model and manipulates the hand joints to create
the targeted hand gestures. Illumination is computed using random
SH coefficients sampled from a range of natural color temperatures.
These coefficients are set in a shader to compute the diffuse irradiance.
The framework allows setting all parameters needed for both random
poses of the hand and random light settings, generating any number
of images for a given gesture. The images are annotated with the SH
coefficients used in the image synthesis.

To capture controlled images of hands under different environmen-
tal lighting conditions, we use an articulated virtual hand model from

TurboSquid1. This model resembles how the HMD camera would cap-
ture a human hand. An example of the generated images is shown in
Figure 4. To account for differences in how users perform gestures, we
randomly rotate the hand model in three dimensions by 5-15° and ap-
ply a random rotation by 0-10° to each finger joint. The illumination
is generated using three bands of SH coefficients, and we randomly
change these coefficients to generate different light conditions.

To make the network more robust to skin variations, we use a varia-
tion of dark and light colored skin textures on the hand model we use.
We compute each material texture by blending a dark and light base
texture with varying alpha values in the range of [0,1]. The two base
skin textures achieve a Fitzpatrick scale [15] of Type I (light skin) and
Type VI (dark skin). We computed the scale on all non-black texels
using the individual Typology Angle (ITA) [4].

To emulate natural light sources, we randomly set the color tem-
perature in the range of 3000 to 8000 Kelvin and convert it to RGB
values using the correlated color temperature [21]. Next, we select
an exposure value in the range [-2.0, 2.0] to adjust the intensity of
the final color. For more variation, we add uniformly distributed off-
sets in the range [-0.1, 0.1] to each color channel. These RGB values
correspond to the first SH coefficient that represents ambient light.
The other coefficients are randomly selected from a uniform distribu-
tion in the range [-1.0, 1.0] that is multiplied by the color tempera-
ture. We apply tonemapping using a global Reinhard operator [32]
and Gamma correction with a value of 2.2 before storing the image in
sRGB color space. For each gesture, we render 10K images using the
above approach and store them together with the corresponding SH
coefficients.

3.4 Hand tracking and model selection
Once a known gesture has been detected, we use the corresponding
frame for light detection. We use the device’s hand tracking to deter-
mine the position of the hand. For each image received on the server,
we define a region of interest based on the bounding box of the fin-
gers after projecting the known 3D joint positions into the image. In-
side this region of interest, we segment the hand by applying a color
threshold in HSV space. Using the mask obtained by this segmenta-
tion step, we reformat the image by cropping it to the hand dimension
and resizing the result to the input size of the network. The detected
gesture is used to select a gesture-specific network version and to run
the inference on the reformatted image. The SH coefficients are sent
back to the client.

3.5 Light probe placement and rendering
Once HandLight has estimated the illumination for a given hand pose,
the system places a new light probe at the location of the hand and
aligns it with the existing lightprobes in the environment. We rep-
resent the environment as a voxel grid and add the new probe to the
corresponding voxel. If the voxel has prior observations, we exclude

1https://www.turbosquid.com

https://www.turbosquid.com


Fig. 5: We illuminate real hands using a light stage that consists of 61
LEDs, which enables capturing hand gestures under varying illumina-
tion conditions. Here we show two examples from our dataset.

estimates older than ten seconds to account for changing light condi-
tions.

From the remaining observations, we calculate a single representa-
tive for the currently altered voxel by computing the median of each
SH component and channel. This approach enables providing an irra-
diance volume that represents the observations and that allows either
selecting the closest available illumination or to interpolate between
light probes, for example, by using the approach of Cupisz et al. [5].

Additionally, we use the estimated probe to estimate the main light
direction as the peak in the SH basis. The main light direction is used
to compute direct shading [44], which is added to indirect shading [2].
Moreover, we use the main light direction to apply shadow mapping
(Figure 8).

3.6 Application integration
HandLight is split into two parts: an offline training system that is im-
plemented using the PyTorch2 framework and an online component
that uses the trained model in an MR application to infer the lighting
from the user’s hand. We demonstrate the feasibility of our approach
on the Microsoft HoloLens 2 and the Snap Spectacles’24, both of
which already provide hand tracking. Because both headsets lack the
computational power to run CNN inference, we employ a client/server
framework with a GPU-accelerated stationary computer as the server
and the headset as the client.

To invoke the computation, the client streams a camera image over
WiFi. We annotate the image stream with the headset pose, camera
pose, and the currently detected hand gesture. The server receives
the annotated images, runs the inference, and then sends the result-
ing SH coefficients back to the headset for rendering. The network
communication runs asynchronously so that rendering is not affected,
and the computed light probes are cached on the HMD to minimize
client-server communication. Thus, the latest illumination estimation
is available for MR rendering without affecting the frame rate on the
client device.

4 EVALUATION

We evaluated how accurately HandLight can estimate the surround-
ing illumination for the three selected gestures on synthetic and real
datasets (Figures 4 and 5). We show qualitative results by comparing
the rendered scenes with the ground truth and estimated illumination.
We determined multiple error metrics for the estimation results and
created visualizations to better understand the impact of our design
choices. Additionally, to compare HandLight with the results of Mar-
ques et al. [25], who, to our knowledge, were the only prior work
that targeted hands for relighting. We implemented their network to
the best of our understanding and trained the network on our training
dataset.

We evaluate HandLight on a desktop computer with an Intel i7-
12700K with 3.6 Ghz, 128 GB RAM, and a NVIDIA GeForce 4090
RTX with 24 GB VRAM. The same machine was used for training and
all evaluations. We measured the average inference time over 1000
runs at 9.06 ms.

2https://pytorch.org

4.1 Synthetic dataset
To evaluate the performance of our model, we use 92 panoramic im-
ages from the Laval Indoor HDR dataset [9]. These images repre-
sent a wide variety of indoor illumination scenarios, offering insight
into how HandLight performs in a wide range of environments. We
used panoramic images because they provide a good approximation
of all incident light directions. To apply the illumination captured
in these panoramic images to a virtual environment, we first convert
the equirectangular images to a spherical representation. We generate
low-discrepancy samples on the unit sphere to uniformly sample from
the panorama. These samples are in spherical coordinates and can be
converted to Cartesian coordinates, resulting in the normal direction.
With this normal, we sample the SH basis functions. Finally, we fetch
the color from the panorama using the normal and accumulate the re-
sulting coefficients. With the resulting illuminations, we render the
hand model with the three gestures to get images for our test set.

4.2 Real dataset
For the real dataset, we capture the users’ hands in our light stage
(Figure 5) with 61 individually controlled LED lights. To capture a
user’s hand under varying viewpoints quickly enough to avoid tiring
the user, we mounted nine camera units in close proximity to each
other. Each camera unit consisted of a Raspberry Pi Zero W and Rasp-
berry Camera Module 3, allowing us to capture images with a resolu-
tion of 2592×4608. Synchronous frame capture was triggered from a
remote computer.

We captured the hands of 10 participants (1 asian female, 1 cau-
casian female, 1 asian male, 7 caucasian male) showing the three ges-
tures. Each gesture is captured with each individual LED turned on,
resulting in 61 different illumination conditions. We used nine differ-
ent viewpoints per condition, resulting in a total of 5490 images per
gesture (61 conditions × 9 viewpoints × 10 participants).

To acquire ground-truth illumination, we captured an HDR envi-
ronment map inside the light stage using a Garmin VIRB 360 cam-
era. We captured five images with exposure values in the range [−2,2]
and combined these into an HDR panorama using Picturenaut3. To
calibrate the panoramic camera with the capture rig, we used a cal-
ibration target to determine the intrinsics of both cameras. We then
used an image target to obtain the extrinsic calibration between the
panorama camera and the light stage. This calibration allowed us
to align the captured panorama with the captured hand images. We
applied intensity-based thresholding to segment the hand without the
background. Thresholding is straightforward because the light stage
background is mostly black or very dark.

4.3 Qualitative results
To visualize the estimated illumination and compare it with the ground
truth, we rendered the SH environment probes as spherical images.
The rendering determines a direction for each texel and samples the
SH basis to determine the texel color. We compared the resulting il-
lumination by computing the per-pixel difference and color-coded it
using a jet colormap.

The predicted illumination was used to render the hands again for
comparison. This comparison allows us to determine the impact of the
illumination on the rendered 3D model of the hand. We also compute
the same colormap to visualize the error between the estimation and
the ground truth. See Figure 4 for sample results of the bloom, fist,
and pinch gestures.

To evaluate the results, we computed the error between the ren-
dered object and the real object. To accommodate the error introduced
by the 3D reconstruction of the virtual object (geometry and material),
we compared the resulting light probes directly. We used spherical
projection and compared the light probes to the ground-truth illumi-
nation captured using a panoramic camera. The captured panorama is
projected to the SH basis (Section 4.1).

3https://www.picturenaut.de

https://pytorch.org
https://www.picturenaut.de


Fig. 6: Qualitative comparison of the three gestures using synthetic data. The first row is the input to the network. The second row shows the
estimated illumination applied to the hand model. The third row shows the per-pixel error between the ground-truth rendering of the hand and
the predicted rendering. The fourth and fifth rows show the results of Marques et al. [25]. The sixth to eighth row shows a visualization of the
ground truth and predicted SH environment maps for HandLight and the per-pixel differences between them. The ninth and tenth rows show
the SH environment and the per-pixel difference to the ground truth for Marques et al. [25].

Fig. 7: Qualitative comparison of the three gestures using captured real data. The first row is the input to the network. The second row column
shows the ground truth illumination that was captured inside the lightstage using a 360° camera. The third row shows the estimated illumination,
and the fourth row shows the per-pixel error between ground truth and estimated SH environment maps. The fifth and sixth rows show the SH
environment and the per-pixel difference to the ground truth for Marques et al. [25].



Fig. 8: Comparison of lighting a virtual object with light estimated
by different methods. The first column shows hands illuminated in
the light stage; the second shows the object being illuminated by the
ground truth illumination that was captured inside the lightstage using
a 360° camera; the third shows the illumination estimated by Hand-
Light; the fourth shows the illumination estimated with Marques et
al. [25].

HandLight achieves superior performance compared to the method
of Marques et al. [24] on images of synthetic (Figure 6) and real (Fig-
ure 7) hands. To further evaluate the results on the real data set, we
used the resulting illumination to illuminate a 3D model. We illumi-
nate the model with the captured ground truth illumination as well as
the estimation results with HandLight. Finally, we also illuminate the
object with illumination estimated with the approach of Marques et
al. [25]. As can be seen in Figure 8, our method correctly recovers
the direction of the light while the results of Marques et al. lead to
incorrect object illumination and degraded appearance.

4.4 Quantitative results

To quantify our performance, we compared the resulting illumination
by computing MSE on the SH coefficients. We also compared the
rendered images using the estimated illumination with ground-truth
images. The metrics used are PSNR, SSIM, and LPIPS. See Table 1
for results on the synthetic dataset. The table shows that the bloom
gesture has the lowest error with respect to the light coefficients on the
LPIPS measure, while fist and pinch show a lower PSNR error. This
observation can be explained by the bloom gesture covering the largest
area in image space among the tested gestures, resulting in the lowest
PSNR.

Since there are several works related to light estimation, we selected

Table 1: Errors computed on the test set with panoramic images.

Synthetic Real
System Gesture PSNR↑ SSIM↑ LPIPS↓ MSE↓ MSE↓
Ours Bloom 31.92 0.97 0.018 0.186 0.891

Fist 33.69 0.97 0.021 0.205 0.946
Pinch 33.53 0.97 0.019 0.199 0.764

[25] Bloom 20.59 0.91 0.058 0.255 1.171
Fist 19.93 0.89 0.056 0.22 1.076
Pinch 22.86 0.9 0.056 0.232 1.175

the one closest to our method, which is the work of Marques et al. [25]
to compare to. We achieve better results in all metrics on the synthetic
dataset as well as on the real data. Since Marques trains a ResNet
on all gestures instead of having one for each interaction gesture, the
overall performance is worse compared to our specialized networks.

4.5 Ablation study
To evaluate our design choices, we compared different parameters for
both data generation and augmentation. First, we tested the impact
of different parameters in light randomization and compared it to the
performance when using real-world data in terms of panoramic im-
ages. We ran three tests: (1) random color variations, (2) random pose
variations, and (3) mixing real with synthetic data.

For the first study, we always used the same set of real-life illu-
mination tests applied to the hand. We tested three different random
color variations: First, we tried uniform colors, i.e., the color of the
SH probe coefficients is chosen randomly from a uniform distribu-
tion. Second, we used a normal distribution while still choosing the
value for each color channel independently. Third, we use random
color temperature from a range of 3k - 10k Kelvin, which we convert
to RGB colors. We report the errors in all three variations using the
same error metrics as in the quantitative evaluation. See Table 2 for
the values, and Figure 9a for a qualitative example of the variations.

In the second ablation study, we compared different parameters to
establish the pose variations of our gestures. For this study, we set the
amount of rotational offset of the hand to 5°, 10°, and 15°. For the
fingers, we use slight random rotations by 5° along the primary axis
for all segments and 2° left and right for the first finger segment. We
used the bloom gesture because it induces the strongest hand varia-
tions among the tested gestures. We trained three networks with the
aforementioned rotations and computed the errors on the test set for
each. See Table 2 for the results.

To emphasise the impact of the pose variation on the performance,
we also conducted an experiment where we changed the hand rotation
around the y-axis in one-degree steps while testing all illuminations
from our test set in each rotation. Subsequently, we use the resulting
renderings to run the estimation with our model and compare the re-
sult to the ground truth illumination. To understand the error based
on the rotation, we compute the MSE between the estimation and the
groundtruth illumination. The plot in Figure 10 shows for each rota-
tion the average error from all lighting conditions in the dataset. The
plot indicates that our system is providing stable results for up to 20
degrees of rotation. At approximately 20 degrees, the error starts in-
creasing. This is expected as we train with variations of 15 degrees.
Interestingly, the error decreases for the pinch gesture at rotations of
about 70–90 degrees. At such large rotations, the fingers are not visi-
ble in the pinch gesture anymore, so the system relies on information
from the back of the hand only. Thus, we believe that false rotations of
the finger have a higher impact on the error than misinterpretations of
the back of the hand. This hypothesis is further supported by the fact
that the pinch gesture shows higher error for all rotations compared to
the fist gesture. We also observe that the pinch gesture shows higher
error at all rotations below 70 degrees. This may result from the pinch
gesture’s smaller surface area and greater structural variation, which
makes it more sensitive to differences between the training data and
the images seen by the system at runtime. Thus, we suggest designing
MR interactions around a fist or similar gesture that provides a larger

Table 2: Errors computed on the test set with panoramic images

Color variation PSNR↑ SSIM↑ LPIPS↓ MSE↓
Normal 25.44 0.923 0.055 0.281
Temperature 31.12 0.958 0.04 0.197
Uniform 23.87 0.9 0.054 0.298
Pose variation
5 degree 28.96 0.97 0.025 0.203
10 degree 27.66 0.96 0.032 0.196
15 degree 29.96 0.96 0.023 0.184
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Fig. 9: Comparison of (a) light and (b) pose variations in the data generation process. The first three columns show ground-truth rendering,
rendering with estimated lighting, and per-pixel error. The last three columns show the ground truth illumination, estimated illumination, and
per-pixel error between them.

Fig. 10: Impact of pose variation on the estimation performance. Here,
we rotate the Hand around the y-Axis from 0 to 90 degrees and run the
inference each time.

surface area and fewer risks of structural variations than relying on
pinch gestures.

The last ablation study compares different training data augmenta-
tions. We use the real test set here for comparison. We train three
different models, one with synthetic, one with real data, and a final
one with mixed real and synthetic data. We chose 1000 images from
the synthetic dataset and 450 images from the real dataset. Then we
test these models on the real test set taken from the light stage. See
Figure 11 for example results. We also compute the MSE between
estimated and ground-truth coefficients on the whole test set. With
purely synthetic images, we get an MSE value of 0.818, on par with
the results on the real dataset. Mixed images achieved an MSE of
0.556, and with only real images, the error was 0.333. This result
seems quite good for a synthetic dataset, but still shows errors in some
regions. When using mixed real and synthetic data, the quality already
increases. Using real training data works best, but has the disadvan-
tage of cumbersome data capturing.

Overall, the ablation showed that our design choices make sense.
The natural illumination improves the performance on real-world light
settings compared to randomized coefficients. We also showed that
changes in hand pose impact the performance depending on the differ-
ence from the trained poses. Thus, we improved the performance by
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Fig. 11: Comparison of different data augmentations. The first col-
umn shows the input image, followed by the ground truth, predicted
illumination, and the error map between them. The first row shows the
result with a model trained on synthetic data only. In the second row,
the data is augmented with real training images from the light stage.
The last row shows the result when using only real data.

adding pose variations in the training set for each gesture.

5 LIMITATIONS

While HandLight enables unconstrained illumination estimation, it re-
quires the user’s hand to be present and visible during gestures. As
such, if the user is faced with an AR experience that requires no inter-
action, the system will not be able to recover the illumination of the
scene. Furthermore, the generated light probes are created at the lo-
cation of the hand. If users interact with distant objects, the estimated
illumination may not correctly represent the conditions at the object’s
location.

Our evaluation focused on comparing HandLight with existing
works focusing on hand-based illumination estimation. Other meth-
ods, such as inverse rendering-based illumination estimation or recov-
ering the scene illumination from the estimated hand mesh, are feasi-
ble but present additional challenges. These methods rely on accurate
modelling and recovery of the user’s hand shape, pose, and reflectance.
Additionally, assumptions such as light color, number of lights in the
scene, or Lambertian surfaces are needed. In the future, HandLight
could be compared with such methods as well as estimations from
scene appearance.



Our system requires the illumination to result in the appearance
changes of the gesture. When the light is directly behind the hand, the
entire visible hand is in shadow, and we cannot predict the direction of
the incoming light accurately. Here, combining HandLight with scene
illumination estimation from camera images can improve the results.

While our system addresses most use cases, it can sometimes have
problems with hand poses that diverge too much from the trained
poses. This also applies to poses HandLight was not trained for. The
quality of the estimation for new hand poses will depend on how close
it matches one of the trained poses. For similar poses, we may still get
usable estimations; however, for robust estimations of recurring new
gestures, an additional model should be trained on such poses.

Skin tones HandLight was not trained on, i.e., Type V and VI on
Fitzpatrick scale, could pose a challenge. In addition, strong skin vari-
ations (such as scars or burns) can pose problems with estimation. Em-
bellishments such as rings or nail polish can introduce errors because
they are not part of our data model. Such shiny areas could even be a
chance to further improve the system by using the reflective properties
to extract more information from specular highlights. Personalizing
HandLight by incorporating information about the user’s hand appear-
ance and detecting embellishments could be incorporated in the future
to further improve the performance.

To account for differences in how precisely the user performs a
gesture, the dataset includes slight variations of hand poses (please
see Section 3.3). However, if during interaction the user’s hand pose
changes slightly outside of the range of trained variations it may hap-
pen that the light estimation becomes unstable. In an interactive ap-
plication, this can result in visible flickering of the estimated lights in
the virtual scene. This can be addressed by estimating the confidence
of the current estimation, so that we can scale down the impact of pos-
sibly wrong estimations. For example, since we know the base pose
from the training set, we can compute the distance of each hand joint
to the current pose. This information might be used as a confidence
value of the corresponding light estimate and thus, allow rejecting or
scaling down the impact of bad estimates.

6 CONCLUSION AND FUTURE WORK

We presented HandLight, a method for estimating illumination in real
environments from the user’s hand interaction in MR. Our results show
that it can believably approximate the current lighting, and we evalu-
ated it on real and synthetic images.

This system can be integrated into consumer-grade MR devices to
support light estimation in real environments. We have demonstrated
HandLights’ feasibility using an AR furniture application. Other in-
teresting applications exist, for example, in an AR gaming context.
When the user interacts with a virtual character with hand gestures,
the shading on the character and other game objects can be adapted
using the illumination obtained from the hands. A similar situation
involves MR training of a worker who operates a complex machine
using an AR headset. Here, we could use the estimated light probes to
better blend virtual decorations with the machine parts.

Our work has several interesting directions for future research.
Combining HandLight with illumination estimated from objects in the
environment can improve the robustness of the system. Such a hybrid
light estimation could deal with light sources occluded by the hand or
continue to work if the hand is not visible.

Another option is to combine input from multiple cameras, which
might become an option in multi-user applications in situations where
the cameras of several users observe a single hand gesture from several
viewpoints.

Moreover, we consider a simplified approach for extending Hand-
Light so that it can handle arbitrary hand poses. This will especially
require developing an approach for capturing new datasets that does
not rely on complex hardware installations, such as the light stage.
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