Change-Resilient Localization Estimation

Fernando Reyes-Aviles* Philipp Fleck®

Dieter Schmalstieg* Clemens Arth?

VRVis GmbH Graz University of Technology University of Stuttgart Graz University of Technology
CHARLES database > Change-Resilient — @ Unchanged Found Place:
! .) 1. Room1 (iPad)
(Stored on device) Localization Dgzle:tgzd zozs_n:;;_nfn_”
00 Added

User's current scan Reference model

(Acquired at runtime) (Stored on device) *
I\ i NEW
- -
) OoLD

Change detection + Model update

Augmented Reality

Figure 1: Our change-resilient localization method receives as input a set of primitives (user’s current scan) captured with an
XR mobile device such as an iPad Pro or an Apple Vision Pro. The primitives are combined into geometric descriptors that we
compare to the models stored in our database to (a) perform localization (i.e., place recognition and pose estimation), (b) detect
primitives whose pose in the current scan and the reference model differ (i.e., primitives whose pose changed between sessions),
and (c) annotate such changes. The output of our method is the pose of the device in a global reference frame, and an updated set
of primitives which preserves the world origin of the reference model, while incorporating the changes in the scene. In the change
detection + model update step of the method, we show unchanged primitives in blue, absent primitives in red, changed primitives in

yellow, and new primitives in purple or green.

ABSTRACT

Indoor localization is essential in applications such as augmented
reality or robotics. Existing solutions for localization in static scenes
work well even for large environments, but localization in envi-
ronments with movable objects whose pose in the scene change
between sessions remains challenging. In this paper, we propose
a change-resilient localization method based on a novel geometric
descriptor computed only from geometric primitives. Our method
is capable of re-identifying primitives that have moved in the scene.
We leverage this feature to update a stored reference model (anchor)
of the environment to accommodate the changes, which enables
localization that is resilient to changes in the scene. We report on
a set of experiments demonstrating the robustness and scalability
of our method. In addition, we present use cases highlighting the
importance of being able to update a reference model.

Index Terms: Localization, Change Detection, World Anchor, 3D
Registration, Augmented Reality, Digital Twin.

1 INTRODUCTION

Global localization, the process of finding a known world origin
in a known environment, is essential in fields such as augmented
reality (AR) or robotics. Navigating a building in AR or accessing a
device in a known location, such as a smart device in the Internet
of Things (I0T), requires knowing one’s pose in a global reference
frame. Although much research has investigated how to scale local-
ization to wide areas, making localization robust if the scene is not
static and objects move between sessions remains challenging.

*e-mail: reyesaviles@tugraz.at

Te-mail: philipp.fleck@tugraz.at

*e-mail: schmaldr @visus.uni-stuttgart.de
Se-mail: clemens.arth@tugraz.at

Existing localization frameworks that assume a static, immutable
scene are easily confused if unique objects or landmarks appear in
changing locations. The ability to detect such changes and update
the reference model is of key importance to further improve the
robustness of localization.

Various commercial XR platforms offer global localization with
respect to a previously acquired map of the environment. The most
prominent examples today include ARKit anchors [2], ARCore an-
chors [25], Azure spatial anchors [38] and Vuforia area targets [S1].
These platforms acquire a 3D map of the environment using on-
device sensors and extract a proprietary feature set for relocalization,
a so-called anchor. With an anchor, instant localization is possi-
ble. However, these anchors require extensive storage, and updating
anchors to incorporate changes in the environment is usually not
possible without repeating the entire anchor generation process.

Recently, we demonstrated that anchors can be constructed from
geometric properties of the scene [41,42]. Compared to the propri-
etary feature descriptors used by commercial platforms, which typi-
cally encode detailed visual properties of individual interest points,
geometric descriptors encode scene information on a much higher
level of abstraction. This property makes geometric descriptors very
lightweight and shareable across platforms. It is enabled by the scene
understanding capabilities of devices such as the HoloLens 2 [36]
or the Apple Vision Pro [3], which acquire a 3D point cloud of the
environment and fit polygonal primitives to planar clusters of points.

While anchors composed of geometric descriptors have many
advantages over their visual descriptor counterparts, both descriptor
flavors have not been designed with updates in mind. This limitation
must be considered a missed opportunity, especially for geometric
descriptors: Scene understanding can instantly generate geometric
primitives from new observations, but existing geometric descriptors
are not designed to incorporate these changes.

In this paper, we propose CHARLES (short for “CHAnge-
Resilient Localization EStimation”) to overcome this limitation.
We extend our previous work [42] to make geometric descriptors
resilient against changes and use these enhanced descriptors for
relocalization in the presence of significant changes in the scene.

Our method takes as input a set of primitives that is taken directly
from the scene understanding component of XR devices such as
the iPad Pro or the Apple Vision Pro. Typically, they detect only
large primitives. Consequently, we work with objects in human-
made environments that can be decomposed into such primitives, for
example, chairs, couches, desks, etc. (see Figure 1). Note that, they
are not capable of detecting primitives from small parts of objects
such as legs of a desk. We do not use RGB images, RGB-D data
or dense depth maps. Thus, we do not detect changes in objects
such as coffee cups or cellphones. The output of our algorithm is the
pose of the device in a global reference frame, and an updated set
of primitives that preserves the world origin of the reference model,
while incorporating the primitives changes in the user’s current
scan (see Figure 2). In summary, this paper presents the following
core contributions:

* A localization method capable of finding the world origin in
a known environment, even when the pose of a substantial
amount of objects in the scene changed.

* A change detection method capable of finding scene-to-model
correspondences of primitives whose pose in the scene changed.

* A method to update a stored reference model by adding, re-
moving and updating primitives, while preserving the original
world origin of the anchor (reference model).

* A workflow to leverage existing reconstruction tools for
change-resilient localization in XR applications, e.g., Leica
or Matterport scanners.

Note that, the scene understanding component of XR devices
cannot provide updates of the pose of dynamic objects at frame rate.
Therefore, we designed our change detection method to find and an-
notate changes between sessions. We do not perform single-session
change detection of dynamic objects in the scene. Also, we leverage
the simultaneous localization and mapping (SLAM) capabilities of
XR devices only to scan a scene and get a real-time updated pose
in the camera coordinate system. Starting with PTAM [29], SLAM
systems split tracking (full frame rate) from mapping (slower). As
already discussed in previous work [49], the global localization pro-
cess runs at an even slower rate. In the worst case scenario, AR
overlays become available several seconds later. Therefore, in this
paper we refer as instant localization to the process of determining
the position and orientation of a device, in a global reference frame,
without significant delay (e.g., within one second).

To demonstrate the practical relevance of our new method, we
run it on two ubiquitous XR devices: iPad Pro and Apple Vision
Pro. In addition, we analyze the plausibility of creating scalable
data structures using open-source tools such as ScanNet [10, 11] and
PlaneRCNN [33, 34]. Furthermore, we show that our localization
method can be used in conjunction with standard reconstruction tools
such as CloudCompare [1] and the Matterport Pro3 camera [35], to
enable change-resilient localization in large-scale environments.

2 RELATED WORK

Our work is at the intersection of research areas including change
detection, pose estimation in dynamic environments, and SLAM.
In the following, we revisit the most important prior work in these
research fields.

2.1 Change detection

Change detection is concerned with all applications that require the
finding of differences between two geometric models. Examples of
applications include the analysis of discrepancies in point clouds [23]
and version control in collaborative virtual design [57].

Fehr et al. [17] developed a method for robotics which deals with
changes in the environment and adequately represents them in the
3D map. They propose a 3D reconstruction algorithm based on an

Render loop (Real-time) XR
H SLAM j‘__.1 AR/VR rendering] APP
T

Scene understanding

[Plane detection
L

l

User's current scan
(Set of primitives)

World origin
(6DOF)

Localization

Model
update

(Sets of primitives) detection (ID, 6DOF)

t

‘ Reference models ‘ Change H List of changes

CHARLES

Figure 2: Example of XR app (3D game engine) using CHARLES. We
leverage the proprietary SLAM and scene understanding components
of XR devices (gray blocks) to detect primitives in the scene and
forward them to CHARLES. The user’s scan (input) is compared to
the stored models at primitive level to determine the world origin and
a list of changes in the scene, which we use to update the reference
model (output). CHARLES reports the world origin to the rendering
component to align the virtual content accordingly.

extended truncated signed distance function (TSDF) to continuously
refine the map while simultaneously obtaining 3D reconstructions
of dynamic objects in the scene.

Langer et al. [17] addressed the problem of detecting novel objects
introduced into the scene for robotics applications. The authors
combine semantic information with horizontal plane detection to
distinguish novel objects from permanent objects, such as furniture.

Qiu et al. [40] proposed a method to describe detailed scene
changes, including change types, object attributes, and spatial loca-
tions. To robustly assess the changes, they used two registered 3D
scans of the scene observed from different routes and viewpoints.

Xu et al. [54] proposed a 3D reconstruction and scene understand-
ing approach for AR applications, based on geometric and semantic
information. They take advantage of modern Al tools to enable
users to interact with physical spaces and objects in a spatially and
semantically meaningful manner. Their 3D reconstruction is based
on TSDF fusion [9], followed by 3D semantic segmentation based
on COCO [32], which allows them to identify more than 100 object
categories. To keep track of object changes between sessions, they
build a graph that combines geometric and semantic features of the
objects in the scene. Semantic segmentation is a very powerful tool,
but it requires dense input data and ample processing power. In
contrast, our geometric descriptors are lightweight, fast to compute,
and they do not rely on the ability to detect specific object classes
which may or may not be present in the target scene.

A class of methods including MeshGit [13], 3DFlow [14], Scene-
Git [5] and NodeGit [43] provide version control for 3D models.
These methods capture changes in meshes, materials, shapes, etc., to
create digital content collaboratively. Version control methods such
as merging enable concurrent work of artists. Changes are detected
by dissecting 3D models into their individual parts and tracking de-
viations from an ancestor model. Establishing a history of changes
on the geometric entities is an essential requirement for change de-
tection, which we address in our method as well. However, we focus
on models of real environments and on fast relocalization. This
requirement is fundamentally different from digital content creation,
where a unique global coordinate system is always known, while the
main interest lies in reliably detecting changes to individual objects.

A separate area considers correspondences between non-rigid 3D
shapes. For example, Donati et al. [15] applied machine learning
to computing correspondences between deformable shapes. A key
element of their method is a feature extraction network that learns
descriptors on pairs of shapes. With these descriptors, dense point-
to-point correspondences between a source and target shape can
be established. Handling deformations goes beyond the scope of
our work. For the objective of relocalization, we can assume that
the changes are primarily caused by changing the location of rigid
objects between sessions, while deformations are of limited interest.

2.2 Localization and pose estimation

Localization can be challenging in non-static environments as the
scene appearance changes between sessions. Cupec et al. [7, 8] pre-
sented a method for indoor place recognition based on the matching
of planar surfaces and straight edges extracted from RGB-D data.
The authors discussed the main cases for failure: repetitive geomet-
ric structure, wide spaces and lack of geometric structure. These are
well-known problems in the literature.

Fernandez-Moral et al. [19,20] developed a method for place
recognition and pose estimation based on planar regions extracted
from range data. They used geometric features such as the area and
the normal vector. Their method enables localization in non-static
scenes where the main structure of the scene remains unchanged.
They achieved high localization success with moderate changes in
the scene. PlaneLoc?2 [53] is another method that leverages planar
regions for 3D global localization. It uses triplets of planar segments
to generate a probability distribution, which is employed for pose
estimation with respect to a global map of the scene.

More recently, Suo et al. [47] proposed a relocalization method
based on planar regions. Similarly to our approach, their method
relies solely on textureless input data and does not depend on other
information, such as RGB images. These methods showed good
localization results; however, they do not elaborate on detecting
changes in the scene or updating the reference model.

Dubé et al. [16] proposed an algorithm for place recognition in
3D laser data based on the concept of segment matching. Their
approach does not rely on assumptions about the environment being
composed of geometric primitives, such as planes, or a rich library
of objects. However, it does not address the problem of localizing
when the appearance of the scene has changed.

Gomez et al. [24] presented a localization that combines met-
ric and semantic information to increase robustness in non-static
environments containing movable objects. Semantic information
extracted from RGB images provides a good coarse localization,
and metric information from depth images delivers fine estimations.
In contrast, we rely only on information extracted from geometric
primitives (e.g., the surface area of polygonal primitives).

Li and Harada [31] proposed a method based on machine learning
for point cloud registration in rigid and deformable scenes. Their
approach lies somewhere in the middle between pose estimation and
change detection. While they do not explicitly look for changes in
deformable scenes, they are able to discern topological changes. We
refer the reader to the survey from Deng et al. [12] for an extensive
coverage of non-rigid 3D registration.

2.3 Simultaneous localization and mapping

Dynamic environments remain a challenge in SLAM to this day [18].
Many methods [30, 50, 52, 56] have been proposed to tackle real-
world challenges such as changing environment geometries, lighting
conditions, and camera or motion artifacts. Solving these prob-
lems would enable robust long-term operation and reliable perfor-
mance in dynamic environments. Methods like DS-SLAM [55],
SOF-SLAM [6] or OVD-SLAM [27] combine semantic segmenta-
tion with movement detection to exclude, from tracking and map-
ping, features from objects moving across the camera.

In contrast, our approach operates on a higher abstraction level,
where the environment is represented by geometric primitives rather
than natural features, point clouds or raw RGB-D data. We use a
SLAM front-end (e.g., Apple’s ARKit or ORB-SLAM [4]) only to
scan a known scene and get a real-time updated pose in the camera
coordinate system. Our method provides the absolute 6DOF pose
w.r.t. a known world origin (stored reference model). In addition, it
detects changes of movable objects, i.e., objects which do not appear
in the same pose in the reference model and the user’s current scan.

3 SCENE DESCRIPTION

Our objective is to support relocalization with geometric descriptors
that are resilient to changes in the scene resulting from changing the
location of rigid objects between sessions. BOWA [42] presented a
geometric descriptor, computed from pairs of parametric primitives,
which is robust enough to perform relocalization in static environ-
ments. Consequently, a simple two-level hierarchy was sufficient:
Primitives from a scanned scene are grouped into a reference model,
and the reference models are stored in a search structure.

If we allow the location of movable rigid objects to be changed,
each consisting of multiple primitives, the naive strategy of BOWA
is no longer sufficient. Assume that we are trying to match the
descriptors in a reference model with the descriptors from the same
place after the objects have moved. All primitives that make up
arigid object will move together. Therefore, descriptors that only
involve primitives of a single rigid object will remain close to identi-
cal. Geometric descriptors involving primitives of multiple objects
may or may not remain equal, depending on whether one of the
objects has moved. Moreover, descriptors that involve symmetric
or rotationally invariant primitives can lead to ambiguous matches
after moving.

Overcoming these challenges requires the development of more
expressive scene descriptions. We start with a set of primitives
delivered by the scene understanding component of an XR platform.
A primitive M = (p,n,u, v, ¢) is created from a set of coplanar points.
We store the centroid p and the normal n of the supporting plane.
Moreover, we determine a bounding rectangle that includes all points
in the supporting plane with minimal area. The bounding rectangle
has edge vectors u, v, such that |Ju||, < ||v||,. In addition, we store
the primitive category ¢. Commercial tools like AR Foundation [48]
and Microsoft’s Scene Understanding SDK [37] classify the planar
surfaces detected in the scene into a variety of categories including
floor, wall, ceiling, etc.

Furthermore, we aggregate connected primitives into clusters to
better handle movable objects. A cluster represents an object or
parts of an object, depending on the quality and completeness of
the observations. For example, clusters can correspond to items
of furniture, and can change if the interior is rearranged. To store
clusters, we extend the hierarchical structure to three levels: Stored
reference models consist of clusters, and clusters consist of prim-
itives. Our change detection strategy first attempts to find cluster
correspondences and resolve any unmatched primitives, which could
have disappeared, been newly added, or are incorrectly assigned.

3.1 Aggregating primitives into clusters

To create clusters from primitives, we measure the distance between
the primitives. We join a pair of primitives into a cluster if two
vertices of each bounding rectangle match. A match is defined by the
Euclidean distance between a pair of vertices below a threshold. The
result of this procedure is an undirected graph, given as an adjacency
matrix, which has primitives as nodes and membership in the same
cluster as edges. The clusters are found with the Reverse Cuthill—
McKee algorithm [22]. Each cluster is assigned a unique cluster
ID that will be retained throughout the lifetime of a (potentially
changing) cluster. A detailed overview of the algorithm is available
in the supplementary material.

3.2 Geometric descriptor

From pairs of primitives, we generate descriptors that extend those

proposed by BOWA [42]. Our descriptor F € R0 is defined as
F(M,M') = (A,A",R,R ,q,t). 6]

It consists of geometric relationships between two primitives M and
M’, which are organized into two feature groups, characterizing
the shapes of the primitives (A4, A’, R, R") and the transformation
between them (q, t).

The first feature group describes the area and aspect ratio of each
primitive’s bounding rectangle:

A=llully- [Vl A =[], [|V[|,,

_ max (fully, [vlla) o max (w5, [1v]])
= DTt ad g o I U ()
min ([ufly, [[v],) ° min ({[u’][5, [[w'[|,)

The second group of features characterizes the transformation
between the primitives using a translation t = p’ — p and a rotation q
stored as a unit quaternion (see Figure 3). To uniquely determine the
rotation, we define a local coordinate system by assuming the origin
is at p; the z-axis is aligned with n, and the y-axis is parallel to v.
We discard unreliable descriptors resulting from parallel primitives,
coplanar primitives, or primitives with equal areas.

3.3 Descriptor matching

We establish correspondences between a reference model and the
scene (i.e., the user’s current scan) by measuring the similarity of
their descriptors. We perform a series of measurements A = {5,}17:1
and accept a model descriptor F,, and a scene descriptor Fy only if
all §; are below predefined thresholds. The first four measurements
are concerned with the areas and aspect ratios:

5 = |Am _AX| &= ‘A:n _A[v‘
max (Ap,As)’ max (A,,A%)’
Ry —R R —R,
63: | m S| , 54: ‘ m ; S‘/ . (3)
max (R, Ry) max (R!,,R})

The next two measurements concern the transformation between the
pairs of primitives:

86 = | qsl-)

The last measurement involves the normals and the vector t. We
extract the normals n = [0,0,1]" and n’ = qnq~! (see Figure 3)
from the descriptors and determine an array a:

85 = [lltm|l, = [Its |21,

-
a= [cos_l(tTn)7 cos ! (t"n'), cos_l(nTn’)} .)
This preparation lets us define the last measurement:

07 = ||lam —agl);. (6)

4 LOCALIZATION

The first step for localization recognizes the place among the refer-
ence models stored in the database and the second performs pose
estimation within the model. We use a vocabulary tree [39] for simul-
taneous model retrieval and correspondence search. The vocabulary
tree is a scalable and efficient search structure for finding descriptors,
in the database, that resemble those computed from the current set
of primitives Q, delivered by the scene understanding component
of the XR platform. It rapidly returns a large number of candidate
matches. We employ the verifications described in Section 3.3 to
confirm the matches. For the search, we only use descriptors that
relate primitives which come from different clusters. This measure
allows us to avoid accepting primitives from clusters that moved in
the scene. Since primitives that make up a rigid object (cluster) will
move together, the descriptors computed from a cluster will remain
identical even if the cluster’s pose in the scene changes.

The vocabulary tree returns a sorted list of candidate models. The
order of the list is determined using a relevance score [39]. For
each candidate model, we perform a geometric verification [42],
which consists of registering the candidate reference model to the
user’s current scan using the pose estimation method described in
CWA [41]. The first candidate anchor which achieves at least three

z q u
//—‘\\n/
n|¥ y
y
-
//
| t
//
v -
P X

M
u

Figure 3: Local coordinate system to compute q and t (Equation 1).

matched primitives and a low registration error is selected as the
final solution, and the search stops.

Three matches of unchanged primitives is the theoretical mini-
mum to perform a successful localization [41,42]. In the presence
of extreme changes in the scene, three or more matches might be
available. However, these matches might involve both, changed and
unchanged primitives. Those matches will allow the correct anchor
to fall into the sorted list of candidate models. Nevertheless, the
geometric verification [42] between the reference model and the
current set of primitives Q will fail. Given the right reference model
and at least two correspondences (retrieved from the vocabulary
tree), we search for more correspondences leveraging the primitive
category (see Section 3) provided by the XR platform.

To find more correspondences, we use the matched primitives to
compute a 6DOF rough registration between the reference model and
the scene (Q2). To do so, we use a series of intermediate coordinate
systems. First, we must identify the floor in both, the reference
model and the scene. If available, we rotate the primitives to align
the normal of the floor with the z-axis (see Figure 4). This step
solves two degrees of freedom (roll and pitch). Then, we translate
the primitives so the floor plane lies on the xy-plane. After these two
transformations, the plane equation of the floor should be [0 0 1 0].
This step solves another degree of freedom (translation along the
z-axis). To solve the three remaining degrees of freedom (yaw
and (x,y) translation), we use the xy-coordinates of the centroids
of the matched primitives to build a system of linear equations,
which we solve using least squares. Finally, we integrate these three
transformations into a single matrix T = [R|t] € SE(3).

We use this transformation to roughly align the reference model
to the scene, and perform a two-stage search of vertical primitives.
First, we take the primitives labeled as walls, and we measure their
normal deviation and plane-to-plane distance as

a:n;ns, €= ‘n;ln— (ps_pm)|~ @)
We consider that two wall primitives match if & > 6 and € < 7.
Second, we take all the remaining vertical primitives which were
not labeled as wall, and measure their normal deviation & and
plane-to-plane distance €.

Although we could also search for additional correspondences
from horizontal primitives, the floor is sufficient to compute the
6DOF registration between the reference model and the user’s cur-
rent scan € (scene).

5 CHANGE DETECTION

In this section, we describe the proposed change detection method,
which helps us to update the reference model. In summary, the steps
to carry out the change detection are as follows:

1. Unchanged primitive correspondences search
2. Changed primitive correspondences search

3. Verification of correspondences

T =[R|t] € SE(3)

Reference model

Wall

Floor alignment to
z-axis and xy-plane

Floor

Top = [R[t] € SE(2)

User's current scan
Wall

Floor alignment to
z-axis and xy-plane

Floor

Figure 4: Intermediate coordinate systems to compute the rough registration used to search additional correspondences in the presence of
extreme changes in the scene. The colors of the primitives depict correspondences. The floor is used to align the primitives with the z-axis and the
xy-plane. The centroids p of the matched primitives (obtained through the place recognition procedure) are used to find the rotation about the

z-axis and the (x,y) translation to align the reference model to the scene.

5.1

Strict thresholds are used for place recognition; thus, the set of
matched primitives (obtained from the vocabulary tree) generally
does not contain all the unchanged primitives in the scene. There-
fore, we repeat the search for correspondences to find all unchanged
primitives. The second search is limited to only the primitives in the
selected reference model, which is a very small number compared
to the entire content of the vocabulary tree. For this small number of
primitives (typically 20-50), we exhaustively compare the descrip-
tors from the scene and the descriptors in the reference model. To
do so, we use the matching method described in Section 3.3, but this
time we employ a set of relaxed thresholds.

We obtain a superset of matches that contains a mixture of un-
changed primitives and borderline cases of primitives that have only
moved slightly. To filter out the latter and retain only the unchanged
primitives, we create a matrix that stores pairwise relations between
the matched primitives. For any pair of primitives in the superset of
matches, we compute a simpler geometric descriptor

Unchanged primitive correspondences search

EM.M) = ([t a u"w]), ®)

where t = p’ — p (see Section 3.2), a is computed using Equation 5
and, u and v’ are the shortest edge vectors of M and M’, respectively.

We create a matrix of descriptors E; for the scene and a matrix
of descriptors E,, for the reference model. Then we perform an
element-wise comparison. For each pair of elements, we compute
the absolute differences between the corresponding features in the
two descriptors. If any difference exceeds a feature-specific thresh-
old, the elements are marked as invalid. If a primitive causes more
than a certain number of invalid elements, it is removed from the set
of matched primitives. We store the resulting unchanged primitives,
along with the cluster ID (see Section 3.1) of the reference model,
in a container Uf.

5.2 Changed primitive correspondences search

To find the changed primitives, we reuse the matching method de-
scribed in Section 3. However, we now apply it to the remain-
ing primitives & = Q\ U (see Table 1) that were not successfully
matched in the initial matching procedure. We suppress primitives
in ¢ with an aspect ratio close to one (i.e., squares), which are easily
confused due to their rotational invariance.

Recall that all primitives that make up a rigid object (cluster)
will move together. Therefore, descriptors F' (see Equation 1) that
only involve primitives of a single changed cluster (rigid object) will
remain close to identical, independently of the pose of the cluster.
Thus, we can iterate over the clusters in { to establish matches for
the changed primitives. For all primitives in a cluster, we perform the
correspondence verifications described in Section 3.3 and Section 5.1
to find matching changed primitives.

Table 1: List of definitions.

M Primitive M = (p,n,u,v,c) created from a set of coplanar points,
comprised of its centroid p, normal n, the edge vectors of its bound-
ing rectangle, u and v, and its primitive category c (see Section 3).

Q Set of primitives scanned at runtime, delivered by the scene under-
standing component of an XR platform.

U List of unchanged primitives, i.e., matched primitives that have

the same pose in both, the reference model (anchor) and the user’s

current scan (see Section 5.1).

List of changed primitives, i.e., matched primitives that have a

different pose in the reference model (anchor) and the user’s current

scan (see Section 5.2).

Q' Combined list of unchanged and changed (U NU) primitives.

<

Narrow objects, such as desks, doors, etc., often yield only a
single primitive. Such solo primitives naturally do not belong to
a cluster. Therefore, we run another exhaustive search for these
remaining, unmatched solo primitives in /. We exhaustively search
for matches using only the size features (see Equation 2), and we
check only 8,04 (see Equation 3). If this check is passed, a primi-
tive is considered a matched primitive. Any remaining unmatched
primitives in ¢/ are removed. We do not check 85—&; because these
measurements are used to ensure that the relative pose between a
given pair of primitives is the same in both, the reference model and
the user’s current scan (see Figure 3). In order to pass the check of
85—07, a pair of solo primitives would need to be moved as a single
rigid body, which is very unlikely to happen in real-world scenarios.

5.3 Verification of correspondences

After identifying the matching primitives, we perform an additional
verification. We merge the results obtained so far into Q' =U NU.
Then we regenerate the clusters in £'. We run the clustering twice,
once according to the primitives in the reference model and once
according to the primitives in the scene. We search for solo primi-
tives in the scene that appear in clusters in the reference model, and
vice versa. These primitives must be incorrect matches, because the
same primitive cannot appear solo and as part of a cluster. This cri-
terion is true for both changed and unchanged clusters. Unchanged
clusters additionally do not allow a changed solo primitive as a mem-
ber, because changed and unchanged primitives cannot be mixed
in the same cluster. We remove these offending primitives from
Q'. When using the strictest settings, we delete the entire offending
cluster to ensure that no inconsistencies remain. An example of this
verification step is available in the supplementary material.

6 MODEL UPDATE

To perform the model update, we need to know the scene-to-model
correspondences and the 6DOF transformation that aligns the refer-
ence model to the current scan of the scene. The correspondences

are contained in Q' (see Table 1), and the transformation is deter-
mined as described in Section 4. With these preparations, the steps
to update the reference model are as follows:

1. Remove missing primitives from the reference model
2. Update changed primitives in the reference model

3. Find new primitives in the scene

4. Serialize model updates

Remove missing primitives. We start the update of the model
by removing the missing primitives from the reference model. We
iteratively compare the clusters in the reference model with the
primitives in '. If a primitive of a given cluster cannot be found in
the scene (it is not in Q'), we mark it as removed. If all primitives
of a given cluster are absent from the scanned scene, we mark the
cluster as deleted.

Updating changed primitives. If correspondences of the
changed primitives exist in Q', we remove the old version of the
primitives from the reference model and add the new version to the
model. These changed primitives are organized into two subcat-
egories: removed and added. The old version of the primitive is
marked as removed, while the new one is added.

Finding new primitives in the scene. In the third step of the
model update, we attach new primitives to existing clusters, and we
add new clusters to the reference model. To perform this update,
we need the transformation T that aligns the reference model to
the current scan of the scene. Since we are looking to update the
reference model, we need to apply the inverse transformation T~! to
the new scene primitives to register them with the reference model.

We create clusters from the new primitives and compare them with
the clusters already present in the reference model. If a new cluster
and an old cluster have primitives in common, we add only the
new primitives to the reference model, inserting them into existing
clusters as attached primitives. Otherwise, if an entirely new cluster
is added to the reference model, its primitives are marked as added.

Serialization of model updates. We serialize all recorded
operations concerning removed, deleted, attached and added prim-
itives. Each record contains a unique primitive ID. This serialized
representation can be kept as a record of the scene evolution, similar
to version control systems.

7 EXPERIMENTAL RESULTS

In the following, we evaluate the localization and change detection
performance. We collected two model versions, A and B, of 15
different rooms, i.e., 30 models in total, with an iPad Pro. Version
A of the scans was used as the reference model. We added several
cardboard boxes as easy-to-move additional furniture and, otherwise,
scanned the room as it presented itself. Version B of the scans was
used to evaluate change detection and localization. In version B,
we moved some of the clusters in the room (chairs, desks, etc.),
including some of the boxes.

All core components of our algorithm (i.e., anchor creation, place
recognition, pose estimation, change detection and anchor update)
were implemented in C/C++. To fetch detected primitives on XR
devices, we created an application using Unity software and the
platform specific scene understanding component, for example,
AR Foundation for iPad Pro and Apple Vision Pro.

7.1 Localization

We evaluated the model retrieval performance of a vocabulary tree
created with primitives extracted from 3D reconstructions of real
rooms in the ScanNet dataset (v2) [10, 11]. This dataset contains 3D
reconstructions of 707 different rooms. Each 3D reconstruction is
annotated. Therefore, it is rather straightforward to extract polygonal
primitives from these scans (see Figure 5).

Figure 5: Example of a 3D reconstruction from the ScanNet
dataset (v2) [10, 11] (left), and the geometric primitives we extracted
from this reconstruction (right) using the data preparation code from
PlaneRCNN [33, 34].

1 -

il / ———
0.8
— ScanNet+CHARLES
0.7+ — Boxes+CHARLES
— = ScanNet+BOWA
L Boxes+BOWA
0.6
V4 il L L L |
0.05 0.1 0.15 0.2 0.25

Figure 6: Anchor retrieval performance. The receiver operating char-
acteristic (ROC) curves show the percentage (y-axis) of anchors that
make it into the top x percent (x-axis) of all anchors stored in the tree.
It is crucial that the corresponding correct anchor falls at the top of the
result, as verification (see Section 4) can only be done for a fraction of
the database when the database grows large. Hence, we are mainly
interested in where the curves meet the y-axis.

We used the data preparation code from PlaneRCNN [33] to ex-
tract the primitives. PlaneRCNN is a method designed to detect pla-
nar surfaces from RGB images. Liu et al. [34] used a RANSAC [21]
loop to fit primitives to the 3D reconstructions in the ScanNet dataset,
which they used in turn to train their CNN model. Their data prepa-
ration code (RANSAC loop) provides the parametric equation of
the primitives. To determine the bounding rectangle that includes
all points in the supporting plane with minimal area, we used the
annotations provided with the ScanNet dataset. Then, we used our
system to create a vocabulary tree using these primitives, and popu-
lated the tree with the descriptors of the reference model of the 15
rooms of real environments that we captured with the iPad Pro.

For comparison, we created a vocabulary tree from purely syn-
thetic room-sized models with an arbitrary number of box-shaped
structures, and populated the inverted index of the tree with the same
descriptors of the reference model of the 15 rooms.

According to Figure 6, the synthetic vocabulary tree can compete
with the one using real data. The performance of the tree created with
ScanNet+PlaneRCNN models is comparable to the performance
of the tree created with artificial models. However, the synthetic
set of models contains 1000 models, which produce 7.7 million
descriptors, while the 707 ScanNet+PlaneRCNN models produce
only 1.5 million descriptors.

Figure 6 also shows a comparison of the actual model retrieval
performance using vocabulary trees created with BOWA descrip-
tors and CHARLES. The tree created with CHARLES descriptors
provides slightly better or on-par performance.

7.2 Change detection

To show the superiority of our new descriptor, we compare
CHARLES with BOWA [42] while performing change detection
in the 15 different room models. Figure 7 shows the results of this
experiment with 15 groups of three bars each. The first bar shows
the results obtained with BOWA, the second one shows the results
obtained with CHARLES, and the third bar shows the ground truth.

Figure 7 reveals that both BOWA and CHARLES are able to find
all unchanged primitives. However, BOWA marks some changed
primitives as unchanged. Figure 8 shows the detailed correspon-
dences in room number 1. The cyan, orange and yellow primitives

50 —

40 |—

10

-EE 11 nﬂ EH
iy

30 —

20

10 —

0
1 2 3 4 5 6 7

| EElunchanged [EDeleted [[Changed [l Attached [Added |

E

g = ﬂ 12
" I
=g

9 10 11 12 13 14 15

Figure 7: Evaluation of the change detection performance using BOWA [42] and CHARLES for 15 different scenes (x-axis). For each scene, we
show a group of three bars. The first bar shows the results obtained with BOWA. The second bar shows the results obtained with CHARLES.
The third one shows the ground truth. The height of the blue part of the bar shows the number of unchanged primitives; red shows the deleted
primitives; yellow shows the changed primitives; purple shows the attached primitives; green shows the added primitives. The sum of unchanged,
deleted and changed primitives is the same for each group of bars, because we mark a primitive as deleted (and added), if we are not able to
detect a change. Note that, with CHARLES, we always found the correct amount of unchanged primitives, while BOWA marks some changed
primitives as unchanged (e.g., compare the first and second bars in groups 1 and 15). This shows the superior localization capabilities of

CHARLES over BOWA.

Version A

Version B

BOWA

=
?

CHARLES

Figure 8: Example of change detection. The colors denote correspondences. The cyan, orange and yellow primitives are detected as unchanged,
and the green and purple as changed when using both BOWA and CHARLES. With BOWA, the pink and deep blue primitives are detected
as unchanged. The table correspondence is right while the deep blue correspondence is not. With CHARLES, we correctly assign the

correspondences and detect the changes in the scene.

did not move between versions A and B, but the green, purple, blue
and pink primitives did move. Note that the position and orientation
between the rable and the top of the box in version A are the same
as the pose between the fable and the stool in version B. In addition,
the size of the top part of the box and the stool are comparable. In
the first row of Figure 8, the table is considered unchanged when
using BOWA, and the top part of the box is matched to the stool.
The second row of Figure 8 shows that it is possible to find the actual
corresponding primitives using CHARLES.

7.3 Long-term localization

The ability to detect changes in the scene and to update the reference
model is of key importance to enable long-term applications. We
conducted a simulation using the model (version B) of the 15 rooms
we captured with the iPad Pro. We divided each model into two sets
of primitives, changed and unchanged (see Table 2). The former
consisted of all lightweight objects whose pose is very likely to
change between sessions, like chairs, doors, boxes, etc. While the
latter included big heavy objects like desks or bookshelves. For
each room, we simulated a 50—day period of time; in other words,
50 independent AR sessions. Each day, we applied a random trans-
formation to all the primitives in the reference model in order to
create an artificial user’s current scan (scene). And finally, we
added Gaussian noise to all the primitives in the scene, changed

and unchanged, to simulate sensor noise. We computed the 6DOF
registration between the reference model and the artificial scene, and
we measured the position and rotation errors as

1
ex=acos (SR Rer)=1)), = [t—tarll. ©

After each day (session), the artificial scene became the new refer-
ence model to incorporate the changed primitives. This procedure
somewhat reflects a situation of updating a reference model of a
room with slight random changes on a daily basis for 50 days.
Figure 9 shows the average of the errors eg and ¢; on the 15
rooms, for three different levels of noise. We measured the error
w.r.t. the original reference model (absolute), and the error w.r.t. the
reference model from the immediate previous trial (relative). While
the former increased slowly, the latter remained very small during
the 50—day period of time. The continuously increasing absolute
error can be attributed to the noise we applied to the primitives in the
scene, which was stored in the new model. Details about the rooms
and additional results are available in the supplementary material.
Table 2 shows that, in average, 25% of the primitives in the scene
remained unchanged. In rooms 9 and 10, we could successfully re-
localize even when only 15% of the primitives remained unchanged.
In general, three matches of unchanged primitives are required to

Table 2: Characteristics of the test rooms used for the long-term
localization simulations.

Room Size [m?] (w[m]x¢[m]) No. primitives ~Change percentage

1 2035 (9.0x2.3) 23 69.57% (16/23)
2 14.95 (4.5%3.4) 29 82.76% (24/29)
3 26.85 (8.5%3.1) 25 72.00% (18/25)
4 41.61 (7.0x6.0) 27 59.26% (16/27)
5 16.48 (4.8x3.4) 29 62.07% (18/29)
6 21.05 (4.7x4.5) 45 68.89% (31/45)
7 39.84 (8.0x5.0) 32 78.12% (25/32)
8 75.76 (11.5%6.6) 35 68.57% (24/35)
9 28.06 (5.6%5.0) 47 85.11% (40/47)
10 27.86 (6.1x4.6) 34 85.29% (29/34)
11 15.72 (4.6x3.4) 21 76.19% (16/21)
12 19.89 (6.1x3.3) 30 86.67% (26/30)
13 23.03 (5.6x4.1) 29 79.31% (23/29)
14 15.34 (4.5x3.4) 20 65.00% (13/20)
15 25.94 (6.0x4.3) 31 80.65% (25/31)

AVG. 27.52 (6.4x4.2) 23 74.63%

perform relocalization [41,42]. However, one can think about sce-
narios of failure. For example, if most of the clusters in the scene
move symmetrically, the place recognition would work but the pose
estimation would fail.

7.4 On-device runtime

We measured the runtime of the proposed method on two popular XR
devices: iPad Pro and Apple Vision Pro. For brevity, we abstain from
discussing further results for other platforms such as Microsoft’s
HoloLens 2 or Magic Leap 2. However, the algorithm is fully
cross-platform, and runtimes for those platforms are similar, as
previously shown in BOWA [42].

Table 3 shows the average runtime for the same 15 rooms we
used for the other evaluations. The total file size of the 15 an-
chors is 2.1 MB, and the approximate size of the vocabulary tree is
89 MB. Loading the vocabulary tree takes a significant amount of
time (~40 ms), however, this is a one-time operation upon start-up.
The change detection runtime is substantial (~190 ms) as well due
to the exhaustive correspondence search (see Section 5.1). Overall,
the method is fast enough to provide a seamless XR user experience.
Details on the 15 rooms are given in the supplementary material.

7.5 Application examples

Besides the situated use case, where data is explicitly recorded in a
given location to be used later on for relocalization, our method is
suitable for integration with existing spatial databases. For example,
building information models require detailed digital representations
of buildings. In addition, sectors such as real estate transitioned to
virtual tours of properties based on 3D scans, reconstructions, and
localized photo-spheres. Structure-from-motion and Al-based meth-
ods allow accurate 3D reconstruction based on spherical images [28].
Such existing reconstructions can be used to enable XR applications
such as situated room tours with virtual avatars.

We propose a workflow to enable relocalization using 3D repre-
sentations (mesh, point cloud, or similar) as the reference model.
Since our localization method uses geometric primitives as input,
we propose the use of ubiquitous software tools to extract primi-
tives from such 3D data. Using CloudCompare [1], we load a 3D
reconstruction and resample it to obtain a uniform point distribution.
Resampling helps to remove outliers and sensor-induced artifacts.
Additionally, other 3D manipulations can be applied, for example,
repositioning, clipping or filtering. To extract geometric primitives,
we use the RANSAC shape detection plugin of CloudCompare [44].
Since our main focus lies on localization on mobile devices, we
extract only planar primitives. This procedure can be scripted in

4 0.8
—1cm

w
o
o

—_

Position error [cm]
N
o
n

Rotation error [degrees]
o
»

10 20 30 40 50 10 20 30 40 50
Test [#] Test [#]

Figure 9: Results of the long-term simulations on 15 different rooms,
for three levels of noise. We measured the world origin estimation error
over 50 consecutive trials. The continuous lines show the absolute
error, i.e., the error w.r.t. the original reference model, while the dashed
lines show the relative error, i.e., the error w.r.t. the reference model
from the immediate previous trial.

Table 3: Mean and median runtimes, in ms, of the proposed method
on an iPad Pro and an Apple Vision Pro.

iPad Pro Apple Vision Pro

Step mean median mean median

1. Vocabulary tree loading 41.41 41.38 37.31 37.24
2. Localization 38.14 37.24 30.51 30.19
3. Change detection 238.67 187.73 135.05 105.75
4. Model update 1.48 1.04 1.43 0.88

CloudCompare to automate the extraction of primitives from 3D
representations. Finally, we label the primitives as floor, wall, etc.
This step can be done with modern scene understanding methods
such as ConceptGraphs [26].

Figure 10 shows a 3D reconstruction captured with a Matterport
Pro3 camera [35]. This reconstruction covers the entire ground
floor of a building. We extracted primitives from five different
rooms using the described workflow. We created an anchor for each
room, and saved them on an iPad Pro and a Apple Vision Pro. We
were able to successfully relocalize in all rooms with CHARLES
on both devices (see Figure 11), despite significant changes to the
environment from the time of data collection (2023) to the time of
relocalization (August, 2025).

7.6 Discussion

Pose refinement. Currently, we limit the implementation of
our method to a single-time localization at the start of the applica-
tion. In the reported experiments, we used scans of the entire test
scenes. A continuous re-estimation of the device’s pose throughout
the XR session could lead to a higher accuracy result. However, an
evaluation on the effects of gradual discovery of new primitives in
the scene is beyond the scope of our work.

Extreme changes in the scene. Many clusters of primitives
whose pose change in the scene between sessions, or clusters that
move symmetrically might lead to wrong place recognition and pose
estimation. As proposed by Cupec et al. [7], an approach to solve
this problem would be to use features extracted from RGB images,
for example, to detect and read signs in the scene.

Multi-instance changes. It is worth noting that our scene rep-
resentation constitutes a rather high layer of abstraction; therefore,
our change detection method is not capable of discerning between
multi-instance changes. However, the end-user should not notice
this change, since the change detection and anchor update should be
transparent to the user. In case the reference model relates digital
content to geometric primitives that can change (e.g., in a BIM rep-
resentation), it would be necessary to adapt our method to be able to
correctly update the digital content as well.

[R3] [R4] [R5]

Figure 10: Reconstruction captured with a Matterport Pro3 camera [35]. Rooms R1-R5 show the scenes we used to test the workflow we
propose in Section 7.5. In the left of the figure, we show a close-up of the 3D reconstruction of room R2 (top), the primitives extracted with
CloudCompare [1,44] (middle), and the primitives captured with ARKit on an iPad Pro (bottom).

Figure 11: Example of relocalization running on an iPad Pro and an Apple Vision Pro, in room R2 (see Figure 10). Note that, we employed the
workflow described in Section 7.5 to generate the anchors from the 3D reconstruction in Figure 10.

Input data. We do not use RGB images, RGB-D data or dense
depth maps to compute our compact scene representation. Commer-
cial tools like AR Foundation or Microsoft’s Scene Understanding
SDK might use RGB images and on-device motion sensors to per-
form plane detection. However, our method is capable to work on
top of approaches that estimate primitives from depth data [45,46],
as previously shown in CWA [41]. Since we use the primitive cate-
gory to perform localization in the presence of extreme changes in
the scene, certain modifications would be needed to compensate the
lack of this feature.

Primitive types. XR frameworks currently only provide pla-
nar primitives. Therefore, we focused on this type in this paper.
However, previous work [45, 46] demonstrated that it is possible
to detect primitives such as spheres or cylinders as well. Our ap-
proach can incorporate such geometric primitives, following certain
modifications, as previously shown in BOWA [42].

Comparison with existing anchor systems. Existing anchor
tools like ARKit [2] or Azure spatial anchors [38], do not exactly
reveal the data sources they use to perform global localization. Very
likely, the use the Wi-Fi connection, visual features from images,
motion sensors, etc. Besides, the pose estimation algorithms are
unknown as well. Therefore, it would be rather difficult to perform
a systematic comparison of world origin deviations between our
method and these tools. On the one hand, our method would out-
perform existing anchor systems on textureless scenarios. On the
other hand, the latter would outperform our method in scenes where
everything has changed and unique landmarks can be identified on
the walls, the floor or the ceiling.

8 CONCLUSION

In this work, we presented an approach to perform change-resilient
localization based on geometric primitives. Our method allows us
to successfully detect changes in the scene using the geometric rela-
tionships between clusters of primitives. It can contribute to solving
the localization problem in changing environments for commercial
XR platforms. The experimental results show its suitability for the
creation and maintenance of spatial anchors in small and medium
sized indoor environments.

Future work will focus on the use of CHARLES for large-scale
localization in industrial environments, primarily using existing
3D reconstructions built from, for example, Matterport scans. The
widely used Azure spatial anchors for the HoloLens are being dis-
continued by Microsoft, and limited alternatives for cross-platform,
reliable localization exist. Therefore, we believe that CHARLES is
important for further research and development. Although the results
presented are promising, additional efforts are required to integrate
productive XR systems with existing scans through CHARLES as
the underlying localization engine.

ACKNOWLEDGMENTS

This work was enabled by the Competence Centre VRVis, the Alexander von
Humboldt Foundation and the European Union under Grant Agreement No.
101092861. The VRVis GmbH is funded by BMIMI, BMWET, Tyrol, Vorarl-
berg and Vienna Business Agency in the scope of COMET — Competence
Centers for Excellent Technologies (911654) which is managed by FFG. The
Alexander von Humboldt Foundation is funded by the German Federal Min-
istry of Research, Technology and Space, the German Research Foundation
DFG (grants 528364066, 495135767, 390831618) and the Austrian Science
Fund FWF (grant 16663).

REFERENCES

[1]

[2

—

[3

=

[4]

[5

=

[6

=

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

CloudCompare - Open Source Project. https://www.danielgm.n
et/cc/. Accessed: 2025-07-12. 2, 8,9

Apple. ARKit — ARAnchor. https://developer.apple.com/do
cumentation/arkit/aranchor. Accessed: 2025-07-12. 1,9
Apple. ARKit — Plane Detection. https://developer.apple.com/
documentation/arkit/tracking-and-visualizing-planes.
Accessed: 2025-07-12. 1

C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. M. Montiel, and
J. D. Tardés. ORB-SLAMS3: An accurate open-source library for
visual, visual-inertial, and multimap SLAM. IEEE Trans. on Robotics,
37(6), 2021. 3

E. Carra and F. Pellacini. SceneGit: A practical system for diffing and
merging 3D environments. ACM Trans. Graph., 38(6), 2019. 2

L. Cui and C. Ma. SOF-SLAM: A semantic visual SLAM for dynamic
environments. IEEE Access, 7,2019. 3

R. Cupec, D. Filko, and E. K. Nyarko. Place recognition based on
planar surfaces using multiple RGB-D images taken from the same
position. In European Conf. on Mobile Robots (ECMR), 2019. 3, 8
R. Cupec, E. K. Nyarko, D. Filko, A. Kitanov, and I. Petrovi¢. Place
recognition based on matching of planar surfaces and line segments.
The Int. Journal of Robotics Research, 34(4-5), 2015. 3

B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In Seminal Graphics Papers: Pushing the
Boundaries, Volume 2,2023. 2

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. NieBner. ScanNet. https://github.com/ScanNet/ScanNet.
Accessed: 2025-07-12. 2, 6

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. NieBiner. ScanNet: Richly-annotated 3D reconstructions of in-
door scenes. In IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017. 2,6

B. Deng, Y. Yao, R. M. Dyke, and J. Zhang. A survey of non-rigid 3D
registration. Computer Graphics Forum, 41(2), 2022. 3

J. D. Denning and F. Pellacini. MeshGit: Diffing and merging meshes
for polygonal modeling. ACM Trans. Graph., 32(4), 2013. 2

J. D. Denning, V. Tibaldo, and F. Pellacini. 3DFlow: Continuous
summarization of mesh editing workflows. ACM Trans. Graph., 34(4),
2015. 2

N. Donati, A. Sharma, and M. Ovsjanikov. Deep geometric functional
maps: Robust feature learning for shape correspondence. In /[EEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. 2
R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena.
SegMatch: Segment based place recognition in 3d point clouds. In
IEEE Int. Conf. on Robotics and Automation (ICRA), 2017. 3

M. Fehr, F. Furrer, I. Dryanovski, J. Sturm, I. Gilitschenski, R. Siegwart,
and C. Cadena. TSDF-based change detection for consistent long-term
dense reconstruction and dynamic object discovery. In IEEE Int. Conf.
on Robotics and Automation (ICRA), 2017. 2

T. Feigl, A. Porada, S. Steiner, C. Loeffler, C. Mutschler, and
M. Philippsen. Localization limitations of ARCore, ARKit, and
Hololens in dynamic large-scale industry environments. In Int. Joint
Conf. on Computer Vision, Imaging and Computer Graphics Theory
and Applications (VISIGRAPP), 2020. 3

E. Fernandez-Moral, W. Mayol-Cuevas, V. Arevalo, and J. Gonzalez-
Jimenez. Fast place recognition with plane-based maps. In /EEE Int.
Conf. on Robotics and Automation (ICRA), 2013. 3

E. Fernandez-Moral, P. Rives, V. Arevalo, and J. Gonzalez-Jimenez.
Scene structure registration for localization and mapping. Robotics and
Autonomous Systems, 75, 2016. 3

M. A. Fischler and R. C. Bolles. Random Sample Consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6), 1981. 6

A. George and J. W. Liu. Computer Solution of Large Sparse Positive
Definite. Prentice Hall Professional Technical Reference, 1981. 3

D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault. Change
detection on points cloud data acquired with a ground laser scanner.
ISPRS Archives, 36(3), 2005. 2

C. Gomez, A. C. Hernandez, R. Barber, and C. Stachniss. Localiza-
tion exploiting semantic and metric information in non-static indoor

(25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

(34]

(35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

environments. Journal of Intelligent & Robotic Systems (JIRS), 109(4),
2023. 3

Google. ARCore — Cloud Anchors. https://developers.google.
com/ar/develop/anchors. Accessed: 2025-07-12. 1

Q. Gu, A. Kuwajerwala, S. Morin, K. M. Jatavallabhula, B. Sen,
A. Agarwal, C. Rivera, W. Paul, K. Ellis, R. Chellappa, C. Gan, C. M.
de Melo, J. B. Tenenbaum, A. Torralba, F. Shkurti, and L. Paull. Con-
ceptGraphs: Open-vocabulary 3D scene graphs for perception and
planning. In IEEE Int. Conf. on Robotics and Automation (ICRA),
2024. 8

J. He, M. Li, Y. Wang, and H. Wang. OVD-SLAM: An online visual
SLAM for dynamic environments. IEEE Sensors Journal, 23(12), 2023.
3

S. Jiang, K. You, Y. Li, D. Weng, and W. Chen. 3D reconstruction of
spherical images: A review of techniques, applications, and prospects.
Geo-spatial Information Science, 27(6), 2024. 8

G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In IEEE Int. Symposium on Mixed and Augmented Reality
(ISMAR), 2007. 2

J. Li, X. Pan, G. Huang, Z. Zhang, N. Wang, H. Bao, and G. Zhang.
RD-VIO: Robust visual-inertial odometry for mobile augmented reality
in dynamic environments. /EEE Trans. on Vis. and Computer Graphics
(TVCG), 30(10), 2024. 3

Y. Li and T. Harada. Lepard: Learning partial point cloud matching in
rigid and deformable scenes. In IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022. 3

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollér, and C. L. Zitnick. Microsoft COCO: Common objects in
context. In European Conf. on Computer Vision, 2014. 2

C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz. PlaneRCNN.
https://github.com/NVlabs/planercnn. Accessed: 2025-07-
12. 2,6

C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz. PlaneRCNN: 3D
plane detection and reconstruction from a single image. In IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 4445—
4454,2019. 2,6

Matterport. Pro3 Camera. https://matterport.com/pro3. Ac-
cessed: 2025-07-12. 2, 8,9

Microsoft. Scene Understanding. https://learn.microsoft.co
m/en-us/windows/mixed-reality/design/scene-understa
nding. Accessed: 2025-07-12. 1

Microsoft. Scene Understanding — SceneObjectKind. https://le
arn.microsoft.com/en-us/windows/mixed-reality/develo
p/unity/scene-understanding-sdk#sceneobjects. Accessed:
2025-07-12. 3

Microsoft. Spatial Anchors. https://learn.microsoft.com/
en-us/windows/mixed-reality/design/spatial-anchors.
Accessed: 2025-07-12. 1,9

D. Nister and H. Stewenius. Scalable recognition with a vocabulary
tree. In IEEE/CVF Conf. on Computer Vision and Pattern Recognition
(CVPR), vol. 2, 2006. 4

Y. Qiu, S. Yamamoto, R. Yamada, R. Suzuki, H. Kataoka, K. Iwata, and
Y. Satoh. 3D change localization and captioning from dynamic scans
of indoor scenes. In IEEE Winter Conf. on Applications of Computer
Vision, 2023. 2

F. Reyes-Aviles, P. Fleck, D. Schmalstieg, and C. Arth. Compact World
Anchors: Registration using parametric primitives as scene description.
IEEE Trans. on Vis. and Computer Graphics (TVCG), 29(10), 2022. 1,
4,8,9

F. Reyes-Aviles, P. Fleck, D. Schmalstieg, and C. Arth. Bag of world
anchors for instant large-scale localization. IEEE Trans. on Vis. and
Computer Graphics (TVCG), 29(11), 2023. 1, 3,4,6,7, 8,9

E. Rinaldi, D. Sforza, and F. Pellacini. NodeGit: Diffing and merging
node graphs. ACM Trans. Graph., 42(6), 2023. 2

R. Schnabel and R. Wahl. RANSAC Shape Detection (plugin). https:
//www.cloudcompare.org/doc/wiki/index.php/RANSAC_Sha
pe_Detection_(plugin). Accessed: 2025-07-12. 8,9

C. Sommer, Y. Sun, E. Bylow, and D. Cremers. PrimiTect: Fast
continuous hough voting for primitive detection. In IEEE Int. Conf. on
Robotics and Automation (ICRA), 2020. 9

https://www.danielgm.net/cc/
https://www.danielgm.net/cc/
https://developer.apple.com/documentation/arkit/aranchor
https://developer.apple.com/documentation/arkit/aranchor
https://developer.apple.com/documentation/arkit/tracking-and-visualizing-planes
https://developer.apple.com/documentation/arkit/tracking-and-visualizing-planes
https://github.com/ScanNet/ScanNet
https://developers.google.com/ar/develop/anchors
https://developers.google.com/ar/develop/anchors
https://github.com/NVlabs/planercnn
https://matterport.com/pro3
https://learn.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding
https://learn.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding
https://learn.microsoft.com/en-us/windows/mixed-reality/design/scene-understanding
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-sdk#sceneobjects
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-sdk#sceneobjects
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/unity/scene-understanding-sdk#sceneobjects
https://learn.microsoft.com/en-us/windows/mixed-reality/design/spatial-anchors
https://learn.microsoft.com/en-us/windows/mixed-reality/design/spatial-anchors
https://www.cloudcompare.org/doc/wiki/index.php/RANSAC_Shape_Detection_(plugin)
https://www.cloudcompare.org/doc/wiki/index.php/RANSAC_Shape_Detection_(plugin)
https://www.cloudcompare.org/doc/wiki/index.php/RANSAC_Shape_Detection_(plugin)

[46]

[47]

[48]

[49

[50]

[51]

A. Stanescu, P. Fleck, C. Arth, and D. Schmalstieg. Semantic seg-
mentation of geometric primitives in dense 3D point clouds. In IEEE
Int. Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), 2018. 9

L. Suo, B. Wang, L. Huang, X. Yang, Q. Zhang, and Y. Ma. VoxelPlane-
Reloc: An indoor scene voxel plane relocalization algorithm. Complex
& Intelligent Systems, 10(3), 2024. 3

Unity. AR Foundation — PlaneClassification. https://docs.uni
ty3d.com/Packages/com.unity.xr.arfoundation@6.2/api/
UnityEngine.XR.ARSubsystems.PlaneClassification.html.
Accessed: 2025-07-12. 3

J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg. Global localiza-
tion from monocular SLAM on a mobile phone. IEEE Trans. on Vis.
and Computer Graphics (TVCG), 20(4), 2014. 2

J. Vincent, M. Labbé, J.-S. Lauzon, F. Grondin, P.-M. Comtois-Rivet,
and F. Michaud. Dynamic object tracking and masking for visual
SLAM. In Int. Conf. on Intelligent Robots and Systems, 2020. 3
Vuforia. Area Targets. https://developer.vuforia.com/1li
brary/vuforia-engine/environments/area-targets/area-

[52]

[53]

[54]

[55]

[56]

(571

targets/. Accessed: 2025-07-12. 1

Y. Wang, Y. Zhang, L. Hu, W. Wang, G. Ge, and S. Tan. A seman-
tic topology graph to detect re-localization and loop closure of the
visual simultaneous localization and mapping system in a dynamic
environment. Sensors, 23(20), 2023. 3

J. Wietrzykowski. PlaneLoc2: Indoor global localization using planar
segments and passive stereo camera. I[EEE Access, 10, 2022. 3

C. Xu, R. Kumaran, N. Stier, K. Yu, and T. Hollerer. Multimodal
3D fusion and in-situ learning for spatially aware Al. In /IEEE Int.
Symposium on Mixed and Augmented Reality (ISMAR), 2024. 2

C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei. DS-
SLAM: A semantic visual SLAM towards dynamic environments. In
Int. Conf. on Intelligent Robots and Systems, 2018. 3

S. Yue, Z. Wang, and X. Zhang. DSOMF: A dynamic environment
simultaneous localization and mapping technique based on machine
learning. Sensors, 24(10), 2024. 3

L. Zhang, A. Agrawal, S. Oney, and A. Guo. VRGit: A version control
system for collaborative content creation in virtual reality. In ACM
Conf. on Human Factors in Computing Systems (CHI), 2023. 2

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@6.2/api/UnityEngine.XR.ARSubsystems.PlaneClassification.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@6.2/api/UnityEngine.XR.ARSubsystems.PlaneClassification.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@6.2/api/UnityEngine.XR.ARSubsystems.PlaneClassification.html
https://developer.vuforia.com/library/vuforia-engine/environments/area-targets/area-targets/
https://developer.vuforia.com/library/vuforia-engine/environments/area-targets/area-targets/
https://developer.vuforia.com/library/vuforia-engine/environments/area-targets/area-targets/

	Introduction
	Related work
	Change detection
	Localization and pose estimation
	Simultaneous localization and mapping

	Scene description
	Aggregating primitives into clusters
	Geometric descriptor
	Descriptor matching

	Localization
	Change detection
	Unchanged primitive correspondences search
	Changed primitive correspondences search
	Verification of correspondences

	Model update
	Experimental results
	Localization
	Change detection
	Long-term localization
	On-device runtime
	Application examples
	Discussion

	Conclusion

